
Reducing Memory Requirements for High-
Performance and Numerically Stable 
Gaussian Elimination

David Boland
Monash University



Less Memory for Energy-efficient and 
Actually Useful Gaussian Elimination

David Boland
Monash University



3

There are two kinds of people (in this room):

 Those who passionately care about anything to do with Gaussian 
Elimination
– You will get:
 A walk through of various different structures to perform GE.
 Tradeoffs of parallelism, memory, pipelining, numerical stability,…
 Disclaimer: Still room for improvement

 Those who stumbled into this room accidentally after a coffee break
– If you care somewhat about parallel processing, you will get:
 Some thoughts about how to reduce memory and I/O requirements for systolic arrays to use 

the whole FPGA.
 Reminder of some algorithm that you learnt ages ago, something about solving matrices.

– If you don’t
 Confusion about whether the speaker’s ethnicity. Is he Australian/English/Canadian/Chinese



4

There are two kinds of people (in this room):

 Those who passionately care about anything to do with Gaussian 
Elimination
– You will get:
 A walk through of various different structures to perform GE.
 Tradeoffs of parallelism, memory, pipelining, numerical stability,…
 Disclaimer: Still room for improvement

 Those who stumbled into this room accidentally after a coffee break
– If you care somewhat about parallel processing, you will get:
 Some thoughts about how to reduce memory and I/O requirements for systolic arrays to use 

the whole FPGA.
 Reminder of some algorithm that you learnt ages ago, something about solving matrices.

– If you don’t
 Confusion about whether the speaker’s ethnicity. Is he Australian/English/Canadian/Chinese



5

There are two kinds of people (in this room):

 Those who passionately care about anything to do with Gaussian 
Elimination
– You will get:
 A walk through of various different structures to perform GE.
 Tradeoffs of parallelism, memory, pipelining, numerical stability,…
 Disclaimer: Still room for improvement

 Those who stumbled into this room accidentally after a coffee break
– If you care somewhat about parallel processing, you will get:
 Some thoughts about how to reduce memory and I/O requirements for systolic arrays to use 

the whole FPGA.
 Reminder of some algorithm that you learnt ages ago, something about solving matrices.

– If you don’t
 Confusion about whether the speaker’s ethnicity. Is he Australian/English/Canadian/Chinese



6

There are two kinds of people (in this room):

 Those who passionately care about anything to do with Gaussian 
Elimination
– You will get:
 A walk through of various different structures to perform GE.
 Tradeoffs of parallelism, memory, pipelining, numerical stability,…
 Disclaimer: Still room for improvement

 Those who stumbled into this room accidentally after a coffee break
– If you care somewhat about parallel processing, you will get:
 Some thoughts about how to reduce memory and I/O requirements for systolic arrays to use 

the whole FPGA.
 Reminder of some algorithm that you learnt ages ago, something about solving matrices.

– If you don’t
 Confusion about whether the speaker’s ethnicity. Is he Australian/English/Canadian/Chinese



7

Gaussian Elimination: A quick reminder

 A direct method to find a solution for Ax=b

𝐴𝐴 =
16 4
8 10

8 −12
12 −10

4 −7
−2 −4.5

−3 7
10.5 3.5

, 𝑏𝑏 =
4
4

11
3.5



8

Gaussian Elimination: A quick reminder

 First form an augmented matrix:
 Then perform row elimination between two rows.

16 4 8 −12 4
8 10 12 −10 4
4 −7 −3 7 11
−2 −4.5 10.5 3.5 3.5

→

16 4 8 −12 4
0 8 8 −4 2
4 −7 −3 7 11
−2 −4.5 10.5 3.5 3.5

(Row2 =Row2 − ⁄1 2 Row1)



9

Gaussian Elimination: A quick reminder

 First form an augmented matrix:
 Then perform row elimination between two rows.

16 4 8 −12 4
8 10 12 −10 4
4 −7 −3 7 11
−2 −4.5 10.5 3.5 3.5

→

16 4 8 −12 4
0 8 8 −4 2
4 −7 −3 7 11
−2 −4.5 10.5 3.5 3.5

(Row2 =Row2 − ⁄1 2 Row1)



10

Gaussian Elimination: A quick reminder

 First form an augmented matrix:
 Then perform row elimination between two rows.

16 4 8 −12 4
8 10 12 −10 4
4 −7 −3 7 11
−2 −4.5 10.5 3.5 3.5

→

16 4 8 −12 4
0 8 8 −4 2
4 −7 −3 7 11
−2 −4.5 10.5 3.5 3.5

(Row2 =Row2 − ⁄1 2 Row1)

Introduce leading zero



11

Gaussian Elimination: A quick reminder

 First form an augmented matrix:
 Repeat for all other rows in a column:

16 4 8 −12 4
0 8 8 −4 2
4 −7 −3 7 11
−2 −4.5 10.5 3.5 3.5

→

16 4 8 −12 4
0 8 8 −4 2
0 −8 −5 10 10
−2 −4.5 10.5 3.5 3.5

(Row3 =Row3 − ⁄1 4 Row1)



12

Gaussian Elimination: A quick reminder

 First form an augmented matrix:
 Repeat for all other rows in a column:

16 4 8 −12 4
0 8 8 −4 2
0 −8 −5 10 10
−2 −4.5 10.5 3.5 3.5

→

16 4 8 −12 4
0 8 8 −4 2
0 −8 −5 10 10
0 −4 2.5 9 4

(Row4 =Row4 − ⁄1 8 Row1)



13

Gaussian Elimination: A quick reminder

 First form an augmented matrix:
 Repeat for all other rows in a column:

16 4 8 −12 4
0 8 8 −4 2
0 −8 −5 10 10
−2 −4.5 10.5 3.5 3.5

→

16 4 8 −12 4
0 8 8 −4 2
0 0 3 −6 12
0 −4 2.5 9 4

(Row3 =Row3 + Row2)



14

Gaussian Elimination: A quick reminder

 Eventually, an upper triangular matrix is formed:

16 4 8 −12 4
0 8 8 −4 2
0 0 3 6 12
0 0 0 4 −1

 Find solution by back substitution:

𝑥𝑥4 = −1
4
, 𝑥𝑥3 =

12−6∗− 1
4

3
, …



15

Gaussian Elimination: A quick reminder

 Eventually, an upper triangular matrix is formed:

16 4 8 −12 4
0 8 8 −4 2
0 0 3 6 12
0 0 0 4 −1

 Find solution by back substitution:

𝑥𝑥4 = −1
4
, 𝑥𝑥3 =

12−6∗− 1
4

3
, …



16

Gaussian Elimination: A quick reminder

 Eventually, an upper triangular matrix is formed:

16 4 8 −12 4
0 8 8 −4 2
0 0 3 6 12
0 0 0 4 −1

 Find solution by back substitution:

𝑥𝑥4 = −1
4
, 𝑥𝑥3 =

12−6∗− 1
4

3
, …



17

Gaussian Elimination: A quick reminder

 Good:
– Simple algorithm
– Often works

 Bad: 
– Slow (limited parallelism)
– Potentially poor numerical performance



18

Making it fast: Parallel GE

 Do parallel row elimination:

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥

→

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
0 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
0 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
0 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥

→

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
0 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
0 0 𝑥𝑥 𝑥𝑥 𝑥𝑥
0 0 𝑥𝑥 𝑥𝑥 𝑥𝑥

→

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
0 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
0 0 𝑥𝑥 𝑥𝑥 𝑥𝑥
0 0 0 𝑥𝑥 𝑥𝑥

 Need parallel access to all rows
– First need to load the entire matrix on chip
– What about large matrices?



19

Making it fast: Parallel GE

 Do parallel row elimination:

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥

→

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
0 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
0 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
0 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥

→

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
0 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
0 0 𝑥𝑥 𝑥𝑥 𝑥𝑥
0 0 𝑥𝑥 𝑥𝑥 𝑥𝑥

→

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
0 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
0 0 𝑥𝑥 𝑥𝑥 𝑥𝑥
0 0 0 𝑥𝑥 𝑥𝑥

 Need parallel access to all rows
– First need to load the entire matrix on chip
– What about large matrices?



20

Making it fast: Parallel GE

 Do parallel row elimination:

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥

→

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
0 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
0 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
0 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥

→

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
0 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
0 0 𝑥𝑥 𝑥𝑥 𝑥𝑥
0 0 𝑥𝑥 𝑥𝑥 𝑥𝑥

→

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
0 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
0 0 𝑥𝑥 𝑥𝑥 𝑥𝑥
0 0 0 𝑥𝑥 𝑥𝑥

 Need parallel access to all rows
– First need to load the entire matrix on chip
– What about large matrices?



21

Making it fast: Parallel GE

 Do parallel row elimination:

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥

→

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
0 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
0 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
0 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥

→

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
0 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
0 0 𝑥𝑥 𝑥𝑥 𝑥𝑥
0 0 𝑥𝑥 𝑥𝑥 𝑥𝑥

→

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
0 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
0 0 𝑥𝑥 𝑥𝑥 𝑥𝑥
0 0 0 𝑥𝑥 𝑥𝑥

 Need parallel access to all rows
– First need to load the entire matrix on chip
– What about large matrices?



22

Making it fast: Block-based GE

 Divide matrix into blocks, load blocks 
into on-chip RAM

 Yellow: load to 
memory

 Green: update matrix
 Blue: stored matrix, 

needed for updates



23

Making it fast: Block-based GE

 Divide matrix into blocks, load blocks 
into on-chip RAM
 Perform parallel GE

 Yellow: load to 
memory

 Green: update matrix
 Blue: stored matrix, 

needed for updates



24

Making it fast: Block-based GE

 Divide matrix into blocks, load blocks 
into on-chip RAM
 Perform parallel GE
 Double buffer for performance

 Yellow: load to 
memory

 Green: update matrix
 Blue: stored matrix, 

needed for updates



25

Making it fast: Block-based GE

 Divide matrix into blocks, load blocks 
into on-chip RAM
 Perform parallel GE
 Double buffer for performance
 Update to right

 Yellow: load to 
memory

 Green: update matrix
 Blue: stored matrix, 

needed for updates

Lower triangular matrix defining multiples to 
the rows for subtraction



26

Making it fast: Block-based GE

 Divide matrix into blocks, load blocks 
into on-chip RAM
 Perform parallel GE
 Double buffer for performance
 Update to right, continue to next rows

 Yellow: load to 
memory

 Green: update matrix
 Blue: stored matrix, 

needed for updates



27

Making it fast: Block-based GE

 Divide matrix into blocks, load blocks 
into on-chip RAM
 Perform parallel GE
 Double buffer for performance
 Update to right, continue to next rows

 Yellow: load to 
memory

 Green: update matrix
 Blue: stored matrix, 

needed for updates

Will subtract multiples of these rows from 
matrices below



28

Making it fast: Block-based GE

 Divide matrix into blocks, load blocks 
into on-chip RAM
 Perform parallel GE
 Double buffer for performance
 Update to right, continue to next rows

 Yellow: load to 
memory

 Green: update matrix
 Blue: stored matrix, 

needed for updates



29

Making it fast: Block-based GE

 Good:
– Simple algorithm
– Fast
– Top performing FPGA implementations

 Bad: 
– Potentially poor numerical performance



30

Making it actually work: GE with partial pivoting

 Simple GE algorithm may fail:

0 4 8 −12 4
8 10 12 −10 4
4 −7 −3 7 11
−2 −4.5 10.5 3.5 3.5

What multiple of Row1 do you take from Row2 to 
make this element zero?



31

Making it actually work: GE with partial pivoting

 Simple GE algorithm may fail:

0 4 8 −12 4
8 10 12 −10 4
4 −7 −3 7 11
−2 −4.5 10.5 3.5 3.5

 Just swap Row2 and Row1

What multiple of Row1 do you take from Row2 to 
make this element zero?



32

Making it actually work: GE with partial pivoting

 More generally, for best numerical performance, you always 
want the row with the largest leading element unchanged
 E.g..

4 4
8 10

8 −12
12 −10

4 −7
−2 −4.5

−3 7
10.5 3.5

4
4

11
3.5

 Still swap Row2 and Row1 before elimination

8 is largest 
leading element



33

Back to the block-based algorithms

 Partial pivoting makes basic block-based Gaussian elimination 
difficult:

Largest leading element here…Swap 
between blocks?



34

Tiled LU Factorisation

 4 different subroutines, 
implement GE with 
partial pivoting & swap 
between blocks
 No known efficient FPGA 

implementation



35

But is a new problem forming?

 Even with basic block-based Gaussian elimination, 5 NxN
matrices must be stored in on-chip RAM



36

Making it fast: Block-based GE

 Divide matrix into blocks, load blocks 
into on-chip RAM
 Perform parallel GE
 Double buffer for performance
 Update to right, continue to next rows

 Yellow: load to 
memory

 Green: update matrix
 Blue: stored matrix, 

needed for updates



37

But is a new problem forming?

 Even with basic block-based Gaussian elimination, 5 NxN
matrices must be stored in on-chip RAM
 To avoid I/O problems, only N parallel processing elements can 

be used. (O(N3) operations and O(N2) elements to load).



38

But is a new problem forming?

 Even with basic block-based Gaussian elimination, 5 NxN
matrices must be stored in on-chip RAM
 To avoid I/O problems, only N parallel processing elements can 

be used. (O(N3) operations and O(N2) elements to load).
 Memory requirement (O(N2)) growing faster than required 

number of PEs (O(N))



39

But is a new problem forming?

 Even with basic block-based Gaussian elimination, 5 NxN
matrices must be stored in on-chip RAM
 To avoid I/O problems, only N parallel processing elements can 

be used. (O(N3) operations and O(N2) elements to load).
 Memory requirement (O(N2)) growing faster than required 

number of PEs (O(N))
 Already a limitation on an Arria 10

– 5 512*512 matrices use 2560 M20Ks (up to 2713 available)
– Uses 512 PEs (up to 1688 available)



40

An Ingenious solution: GE with pairwise pivoting

 For numerical stability & parallelism, instead of finding largest 
value, find largest value between each pair of rows.



41

An old (pre 1990) solution: GE with pairwise pivoting

 For numerical stability & parallelism, instead of finding largest 
value, find largest value between each pair of rows.



42

An old (pre 1990) solution: GE with pairwise pivoting

 For numerical stability & parallelism, instead of finding largest 
value, find largest value between each pair of rows.

Each PE 
compares two 
rows



43

An old (pre 1990) solution: GE with pairwise pivoting

 For numerical stability & parallelism, instead of finding largest 
value, find largest value between each pair of rows.

The row with the largest leading 
element is unchanged, exiting the top 
output of a PE

Each PE 
compares two 
rows



44

An old (pre 1990) solution: GE with pairwise pivoting

 For numerical stability & parallelism, instead of finding largest 
value, find largest value between each pair of rows.

The row with the largest leading 
element is unchanged, exiting the top 
output of a PE

The other row subtracts a multiple of the 
unchanged row, creating a leading zero 
and exits the lower output of a PE

Each PE 
compares two 
rows



45

An old solution: GE with pairwise pivoting

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥

→

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0

→

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0

* Because each PE performs comparison and swap if necessary, zeros will be at same location



46

An old solution: GE with pairwise pivoting

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥

→

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0

→

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0

* Because each PE performs comparison and swap if necessary, zeros will be at same location



47

An old solution: GE with pairwise pivoting

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0

→

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 0 0

→

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 0 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 0 0

→

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 0 0
𝑥𝑥 𝑥𝑥 0 0 0



48

An old solution: GE with pairwise pivoting

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0

→

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 0 0

→

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 0 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 0 0

→

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 0 0
𝑥𝑥 𝑥𝑥 0 0 0



49

An old solution: GE with pairwise pivoting

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0

→

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 0 0

→

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 0 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 0 0

→

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 0 0
𝑥𝑥 𝑥𝑥 0 0 0



50

An old solution: GE with pairwise pivoting

 Good:
– Fast
– Numerically stable
– Advantages of systolic array (not continual access to memory)

 Bad: 
– I/O problem for large matrices



51

Double the matrix size



52

Using one PE to emulate two

 Let’s study the output of one PE with a different input order:

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥

→

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0

→

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0

 Re-arrange:
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0



53

Using one PE to emulate two

 Let’s study the output of one PE with a different input order:

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥

→

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0

→

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0

 Re-arrange:
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0



54

Using one PE to emulate two

 Let’s study the output of one PE with a different input order:

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥

→

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0

→

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0

 Re-arrange:
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0



55

An old solution: GE with pairwise pivoting

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥

→

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0

→

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0

* Because each PE performs comparison and swap if necessary, zeros will be at same location

Same 
format



56

An old solution: GE with pairwise pivoting

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥

→

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0

→

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0

* Because each PE performs comparison and swap if necessary, zeros will be at same location

Re-use



57

Can use second half of circuit for final solution

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0

→

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 0 0

→

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 0 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 0 0

→

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 0 0
𝑥𝑥 𝑥𝑥 0 0 0



58

Rinse & repeat

•

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥

→

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0

→

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0

→

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 0 0
𝑥𝑥 𝑥𝑥 0 0 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 0 0
𝑥𝑥 𝑥𝑥 0 0 0



59

Rinse & repeat

•

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥

→

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0

→

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0

→

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 0 0
𝑥𝑥 𝑥𝑥 0 0 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 0 0
𝑥𝑥 𝑥𝑥 0 0 0

Re-arrange



60

Rinse & repeat

•

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥

→

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0

→

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0

→

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 0 0
𝑥𝑥 𝑥𝑥 0 0 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 0 0
𝑥𝑥 𝑥𝑥 0 0 0

Re-arrange



61

Rinse & repeat

•

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥

→

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0

→

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0

→

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 0 0
𝑥𝑥 𝑥𝑥 0 0 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 0 0
𝑥𝑥 𝑥𝑥 0 0 0

Re-arrange



62

Rinse & repeat

•

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 0 0
𝑥𝑥 𝑥𝑥 0 0 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 0 0
𝑥𝑥 𝑥𝑥 0 0 0

→

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 0 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 0 0
𝑥𝑥 𝑥𝑥 0 0 0
𝑥𝑥 𝑥𝑥 0 0 0

→

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0 0 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0 0 0 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0 0 0 0 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 0 0 0 0 0 0
𝑥𝑥 𝑥𝑥 0 0 0 0 0 0 0

Re-arrange



63

Double the matrix size

Same 
format



64

Double the matrix size

Re-use



65

Rinse & repeat

•

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 0 0
𝑥𝑥 𝑥𝑥 0 0 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 0 0
𝑥𝑥 𝑥𝑥 0 0 0

→

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 0 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 0 0
𝑥𝑥 𝑥𝑥 0 0 0
𝑥𝑥 𝑥𝑥 0 0 0

→

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0 0 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0 0 0 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0 0 0 0 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 0 0 0 0 0 0
𝑥𝑥 𝑥𝑥 0 0 0 0 0 0 0

Re-arrange



66

An alternative output circuit

•

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 0 0
𝑥𝑥 𝑥𝑥 0 0 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 0 0
𝑥𝑥 𝑥𝑥 0 0 0

→

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 0 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 0 0
𝑥𝑥 𝑥𝑥 0 0 0
𝑥𝑥 𝑥𝑥 0 0 0

→

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0 0 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0 0 0 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0 0 0 0 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 0 0 0 0 0 0
𝑥𝑥 𝑥𝑥 0 0 0 0 0 0 0

Re-arrange



67

An alternative output circuit

•

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 0 0
𝑥𝑥 𝑥𝑥 0 0 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 0 0
𝑥𝑥 𝑥𝑥 0 0 0

→

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 0 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 0 0
𝑥𝑥 𝑥𝑥 0 0 0
𝑥𝑥 𝑥𝑥 0 0 0

→

𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0 0 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0 0 0 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0 0 0 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0 0 0 0
𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥 0 0 0 0

Re-arrange



68

Updating a large matrix



69

Updating a large matrix



70

Updating a large matrix

Clean up left-over using 
similar circuit running in 
parallel, reading 
relevant rows.



71

Updating a large matrix



72

Efficiency concerns

 Second half only gets inputs every other cycle. PEs wasted



73

Efficiency concerns

 Second half only gets inputs every four cycles. PEs wasted



74

Solution: share some PEs

 Not 100% efficient (could be done, but trade for on-chip 
memory)
 Cycle 1:



75

Solution: share some PEs

 Not 100% efficient (could be done, but trade for on-chip 
memory)
 Cycle 2:



76

Solution: share some PEs

 Not 100% efficient (could be done, but trade for on-chip 
memory)
 Cycle 3:



77

Solution: share some PEs

 Not 100% efficient (could be done, but trade for on-chip 
memory)



78

End Result (with other optimisations)



79

End Result (with other optimisations)

Limited by Slices (mainly due to pipeline 
registers to boost clock frequency)



80

End Result (with other optimisations)

Use more DSPs Use less memory

Limited by Slices (mainly due to pipeline 
registers to boost clock frequency)



81

End Result (with other optimisations)

Use more DSPs Use less memory

Limited by Slices (mainly due to pipeline 
registers to boost clock frequency) Achieve comparable 

performance to the 
peak possible using 
basic block-based GE



82

End Result (with other optimisations)

Use more DSPs Use less memory
Vs basic block-based GE, it will work 
on many more algorithms (subject 
to single precision being sufficient)

Limited by Slices (mainly due to pipeline 
registers to boost clock frequency) Achieve comparable 

performance to the 
peak possible using 
basic block-based GE



83

Summary

 The approach of this paper saves memory, achieves high 
performance and is numerically stable (and opens doors for 
some room for improvement)



84

Conclusions

 Please, please, please, no more GE/LU decomposition papers 
that don’t include some form of pivoting.
 Perhaps consider if its possible to re-examine the use of 

systolic arrays in your designs, perhaps with re-ordered inputs,
to reduce I/O or memory.



85

Conclusions

 Please, please, please, no more GE/LU decomposition papers 
that don’t include some form of pivoting.
 Perhaps consider if its possible to re-examine the use of 

systolic arrays in your designs, perhaps with re-ordered inputs,
to reduce I/O or memory.

 (Feel free to give me a Stratix 10 to see some big performance 
gains)



86

Conclusions

 Please, please, please, no more GE/LU decomposition papers 
that don’t include some form of pivoting.
 Perhaps consider if its possible to re-examine the use of 

systolic arrays in your designs, perhaps with re-ordered inputs,
to reduce I/O or memory.

 (Feel free to give me a Stratix 10 to see some big performance 
gains)
 (Don’t want to offend anyone from Xilinx, I’ll take your boards 

too)


	Reducing Memory Requirements for High-Performance and Numerically Stable �Gaussian Elimination
	Less Memory for Energy-efficient and �Actually Useful Gaussian Elimination
	There are two kinds of people (in this room):
	There are two kinds of people (in this room):
	There are two kinds of people (in this room):
	There are two kinds of people (in this room):
	Gaussian Elimination: A quick reminder
	Gaussian Elimination: A quick reminder
	Gaussian Elimination: A quick reminder
	Gaussian Elimination: A quick reminder
	Gaussian Elimination: A quick reminder
	Gaussian Elimination: A quick reminder
	Gaussian Elimination: A quick reminder
	Gaussian Elimination: A quick reminder
	Gaussian Elimination: A quick reminder
	Gaussian Elimination: A quick reminder
	Gaussian Elimination: A quick reminder
	Making it fast: Parallel GE
	Making it fast: Parallel GE
	Making it fast: Parallel GE
	Making it fast: Parallel GE
	Making it fast: Block-based GE
	Making it fast: Block-based GE
	Making it fast: Block-based GE
	Making it fast: Block-based GE
	Making it fast: Block-based GE
	Making it fast: Block-based GE
	Making it fast: Block-based GE
	Making it fast: Block-based GE
	Making it actually work: GE with partial pivoting
	Making it actually work: GE with partial pivoting
	Making it actually work: GE with partial pivoting
	Back to the block-based algorithms
	Tiled LU Factorisation
	But is a new problem forming?
	Making it fast: Block-based GE
	But is a new problem forming?
	But is a new problem forming?
	But is a new problem forming?
	An Ingenious solution: GE with pairwise pivoting
	An old (pre 1990) solution: GE with pairwise pivoting
	An old (pre 1990) solution: GE with pairwise pivoting
	An old (pre 1990) solution: GE with pairwise pivoting
	An old (pre 1990) solution: GE with pairwise pivoting
	An old solution: GE with pairwise pivoting
	An old solution: GE with pairwise pivoting
	An old solution: GE with pairwise pivoting
	An old solution: GE with pairwise pivoting
	An old solution: GE with pairwise pivoting
	An old solution: GE with pairwise pivoting
	Double the matrix size
	Using one PE to emulate two
	Using one PE to emulate two
	Using one PE to emulate two
	An old solution: GE with pairwise pivoting
	An old solution: GE with pairwise pivoting
	Can use second half of circuit for final solution
	Rinse & repeat
	Rinse & repeat
	Rinse & repeat
	Rinse & repeat
	Rinse & repeat
	Double the matrix size
	Double the matrix size
	Rinse & repeat
	An alternative output circuit
	An alternative output circuit
	Updating a large matrix
	Updating a large matrix
	Updating a large matrix
	Updating a large matrix
	Efficiency concerns
	Efficiency concerns
	Solution: share some PEs
	Solution: share some PEs
	Solution: share some PEs
	Solution: share some PEs
	End Result (with other optimisations)
	End Result (with other optimisations)
	End Result (with other optimisations)
	End Result (with other optimisations)
	End Result (with other optimisations)
	Summary
	Conclusions
	Conclusions
	Conclusions

