
The Stratix™ 10 Highly Pipelined
FPGA Architecture
David Lewis, Gordon Chiu, Jeffrey Chromczak, David Galloway,
Ben Gamsa, Valavan Manohararajah, Ian Milton, Tim Vanderhoek,
John Van Dyken

Altera (now part of Intel Corp.)

FPGA 2016

Pipelining in the Routing: Previous Work & Assumptions

2

An old idea:
-  Singh 2001; Eguro 2008
-  Older fine grained studies used pass transistor architectures
-  Reported costly and mediocre performance for registered routing;
-  Focused on retiming

Other architectures targeted synchronous datapath designs
-  With higher level models

Assumptions going forward:
1.  Designs are becoming more pipelined
2.  Can auto pipeline to add latency
3.  Designers are more willing to redesign to gain speed

FPGA 2016

Typical Routing Multiplexers

3

Have two stages
Are followed by 1 or 2 buffers to drive the wire or LE input

	
C

C

C

CC

in7

in8

in9

in10

in11

CC

in0

in1

in2

in3

in4

in5

4 4:1 first stage muxes 4:1 second
stage mux

buffer+driver
C

in12

in6

in13

in14

in15

FPGA 2016

Key Idea: Add Pipelining to Routing Mux

4

Creates a pipelined direct
drive routing fabric
Uses internal pulse latch to
buffer
-  8 minimum width and 2 larger

transistors

Minimal area cost and delay
Latch alone is <5% soft logic
area for 100% routing
drivers
Clocking is key to cost

rcomb

cp latch_en

latch_en

nlatch_en

nlatch_en

nlatch_en

latch_en

added FF
transistors

added clocking
transistors

FPGA 2016

How Many Flip-Flops (k) Should Go After Mux?

5

At least one FF (k=1) in each routing mux
-  May need k > 1 in locations where multiple signals converge to balance

latency mismatches
Built CAD to selectively enables from 0 to k FF during retiming
k = 1 is especially efficient implementation because can use pulse
latch with flow through and no output mux
k > 1 requires full edge triggered FF and bypass muxes for subsequent
FFs: +10% area and increase delay per FF
Experiments with larger k are useful to establish bounds on
performance, but unlikely we would build k > 1

k FFs

Architectural Model

FPGA 2016

Why K > 1?

6

Retiming reconvergent
paths can often lead to
latency balancing
problems

Can correct minor
mismatches in latency by
providing k > 1 wherever
signals converge

=	Routing	element	with	optional	register

f2

Re
tim

in
g

f0 f1

f2

f0 f1

FPGA 2016

Pipelined Logic Fabric

7

Postulate k FFs in front of logic element
Note shared AB inputs should have separate FFs to allow
independent pipelining of 5-LUTs

	

C1

D1

F

B

A

C0

D0

E

k

k

k

k
k
k

k
sld,

sdata,
sclr, ce

+

+

4-LUT

4-LUT

4-LUT

4-LUT

5 LUT

5 LUT

6 LUT

Adder:
F0(A,B,C0,D0)+F1(A,B,C0,D0)
F2(A,B,C1,D1)+F3(A,B,C1,D1)

k

k

k

k

k

k
k
k

k

k

k
k
k sld,

sdata,
sclr, ce

k

k

k
k
k

k

k

k
k
k

k

	
LUT	and
adder

SLD

K

nSCLR

K

CE

K

ACLR

K

FPGA 2016

Three Different Experimental Flows

8

1.  Retiming only: allow each FF in the user design to be
retimed to anywhere there is a FF location
-  Preserve exact cycle by cycle behaviour

2.  Pipelining: allow CAD flow to insert arbitrary latency in
front of each clock domain and then retime
-  Preserves functional behaviour, but adds the same latency to all input to

output paths
-  Note: can’t ever put extra FFs in loops

3.  Design modification: designer modifies the RTL to enable
greater levels of pipelining while preserving functional
requirements
-  Loops are critical in pipeline performance
-  Try and restructure design to minimize logic in loops + other techniques
-  Add pipelining in front of modules

FPGA 2016

Early Experimental Conditions/Parameters

9

Used modified Arria 10 model and approximate pipelining
hardware
Pipeline largest clock domain in each circuit
Use k = 4 to approximate lots of hardware
Assume no constraints on clocks available to routing FFs
Measure achieved fmax after retiming / pipelining
Loop limit: delay through longest loop in circuit / number of
FFs in the loop
-  Can’t insert FFs in a loop without breaking functionality

Arch limit: longest FF location to FF location delay in any
path in the circuit

FPGA 2016

Early Limit Study Experimental Results

10

Average 62% fmax increase; loop limited in most cases

Largest
clock
domain
only

FPGA 2016

Refinements to CAD and Architecture

11

Actual retiming done at the end of the CAD flow
-  After placement and routing

Retiming-aware CAD flow uses continuous retiming based
on skewed clocks at each FF
-  Skew clocks to optimize timing

Paths that will be critical after retiming will have lower slack

CAD can then target these paths for better clustering,
placement, and routing

FPGA 2016

Impact of Retiming Aware CAD

12

Up to 19% fmax improvement by focusing on paths that
are critical for retiming
Critical paths are generally those in loops
-  pure feedforward circuits can generally be deeply pipelined

FPGA 2016

Effect of Number of FFs in Routing Mux: k

13

About 5% fmax loss by dropping k to 1,
-  but much less than area cost of k = 4
-  Normalized to k = 1 result; we built in +5% fmax in original experiment

FPGA 2016

Hold Time Issue with Pulsed Latch

14

Consequence of low-cost pulse latch: needs some hold
time, else data can race through consecutive latches
Don’t know exact value of hold time during early
architecture experiments, but guess ~200ps

FPGA 2016

Clocking

15

Prior academic work largely ignores clocking
Real customer design set contains an average of 14 clocks
per design, up to 67
Stratix 10 global clock architecture is routable for better
timing properties, but no changes relevant to the pipelined
fabric
-  See Ebeling FPGA 2016 for details

6 clock lines available to provide global clocks to each LAB
Approximately 160 routing mux FFs per LAB
-  Plus the 80 inside the LAB logic

A 6:1 mux per latch would be too large/expensive
-  Several times larger than the FF

Since many FF clock muxes, desire to minimize their size

FPGA 2016

Clocking Mux Architecture

16

Divide the FFs into groups
and make them share clocks
-  Ex: all short wires going left/right;

all long wires going up/down, etc.

Pick 1 or 2 clocks per group
from the 6 available
Each FF selects from those
clocks, using a 2:1 mux or
no mux at all
Carefully tuning the groups
resulted in no Fmax loss

Row clocks

N routing
clocks

M:1

FF in DIM/LIM/
LEIM

FPGA Architect’s First Law of
Entropy:
You have to run just to stay in place

17

FPGA 2016

Results Accounting for Realities

18

With real CAD, k = 1, hold time, all domain fmax
Retiming only: +10% fmax; pipelining: +53% fmax
-  Small domains have less benefit from pipelining

FPGA 2016

Other Architecture Changes - Logic Element Modification

19

Stratix II to V have shared LUT mask (SLM)
All provide 2 5-LUT with 8 inputs à 2 shared inputs, 3 unique
SLM can build 2 6-LUT with identical functions, and 4 shared inputs
Difficult for pipelining because internal stages of the LUT are used for
two different logical functions
-  Can’t independently retime

Removed SLM
Also removed complicated arithmetic (3 input adder and use of all 8
inputs)
Push back part of adder into LUTs; simplify adder hardware
Converted asynchronous clear and synchronous clear into 2 general
purpose clears
Synchronous load is now static only

FPGA 2016

Simplified ALM

20

Simpler, at least in comparison to previous, small fmax win

dc0

a
b

4-LUT

dc1

e0

e1

f0

f1

z0 (a,b,dc0,dc1,e0,f0)
z1(a,b,dc0,e0,f0)

z0 (a,b,dc0,dc1,e1,f1)
z2(a,b,dc1,e1,f1)

+

f0

twist
in

+

f1
twist
out

z0 (a,b,dc0,e0) +
z1(a,b,dc0,f0)

z2 (a,b,dc1,e1) +
z3(a,b,dc0,f1)

C1

D1

F

B

A

C0

D0

E

k

k

k

k
k
k

k
sld,

sdata,
sclr, ce

+

+

4-LUT

4-LUT

4-LUT

4-LUT

5 LUT

5 LUT

6 LUT

Adder:
F0(A,B,C0,D0)+F1(A,B,C0,D0)
F2(A,B,C1,D1)+F3(A,B,C1,D1)

k

k

k

k

k

k
k
k

k

k

k
k
k sld,

sdata,
sclr, ce

k

k

k
k
k

k

k

k
k
k

k

previous Stratix Stratix 10

FPGA 2016

Routing Optimization

21

Larger variety of metal layers in Intel vs. TSMC
2 stage investigation of wire lengths and allocation to metal
layers: +4.5% fmax at +0.8% area

Result of Stage 1:
+3.5% Fmax
+0.5% Area

Result of Stage 2:
+4.5% Fmax
+0.8% Area
-.6% Wire Cap
+3% Routability

Arria-10 Architecture

Shorter wire architectures
result in higher area costs
and fmax

Longer wire architectures
result in Lower area costs
and fmax

Routing Area-Fmax

H wire H wire
fraction

V wire V wire
fraction

H2 10% V2 12%
H4 28% V3 38%
H10 50% V4 33%
H24 12% V16 17%

FPGA 2016

How User Designs were Modified in Experiments

22

Altera design expert worked with several customers
Modified their designs to enable more pipelining and
preserve functional requirements
Full designs, not isolated cores
Primarily reduced paths through loops
Shannon decomposition of critical loop state
Moving some computation that can be precomputed earlier
in the pipeline
Loop unrolling; works better with S 10 than previous
Did back port design changes to Stratix V to measure
architecture + design benefit

FPGA 2016

Results

23

Redesign is 2.4X faster than S V
Back port to S V is 1.23X faster
Architecture + redesign + process is 92% faster than
optimized design in S V

Module S V
(MHz)

Retime
S10

Pipe
S10

Redesign
S10

Redesign
SV

1A 320 380 (+19%) 460 (+44%) 489 (+53%) 329 (+3%)
1B 327 482 (+47%) 626 (+91%)
1C 319 432 (+35%) 457 (+43%)
2A 250 429 (+72%) 454 (+82%) 942 (+277%) 347 (+39%)
3A 191 290 (+52%) 291 (+52%) 748 (+292%) 359 (+88%)
4A 403 599 (+49%) 638 (+58%) 725 (+80%) 411 (+2%)
4B 384 555 (+45%) 570 (+48%) 695 (+81%) 391 (+2%)
Geo % 45% 59% (*) 136% 23%

(*) typo in paper: 49% should be 59%

FPGA 2016

Quartus Enhancements for Stratix 10

24

Constraint-based retiming to solve for minimum clock period

Design optimization advisor:

Where should asynchronous resets be converted into synchronous?
Where should pipeline registers be added to enable deeper pipelining?
Which loops limit the performance?
Use set of infeasible constraints from retimer to show where the
conversions need to be done
Can automatically modify the retiming graph to model the proposed
change and report on potential fmax

FPGA 2016

Quartus Enhancements for Stratix 10

25

Speculative modifications and Fmax
predictions for each

Limits to performance for particular
(speculative) step

FPGA 2016

Conclusions

26

Direct drive routing enables a very low cost FF in each
routing mux
Most of the cost is elsewhere
-  FFs in the logic
-  LAB level clock muxing

Put one FF location everywhere you can think of, and
carefully optimize the clock muxing
Subtle interactions between pipelining and internals of a
complicated logic element
Optimized designs 92% faster in S 10 than S V
Quartus support to help designers identify where to focus

