
AFFIX: Automatic Acceleration Framework for
FPGA Implementation of OpenVX Vision

Algorithms

Sajjad Taheri1, Payman Behnam2, Eli Bozorgzadeh1, Alexander
Veidenbaum1, Alexandru Nicolau1

1Department of Computer Science, UC Irvine

2School of Computing, University of Utah

27th ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays

FPGA’19 1 / 32

Motivation

FPGA’19 2 / 32

FPGAs for Computer Vision Acceleration

Computer Vision

X Important applications in automation, entertainment,
healthcare, etc.

× Complex algorithms and demanding workloads

FPGAs offer

X Inherrent parallelism, high performance, low latency, energy
efficiency.

Efficient FPGA acceleration requires hardware design expertise and
considerable amount of engineering man-hours.

FPGA’19 3 / 32

AFFIX Goal

FPGA acceleration flow for high level graph-based computer
vision algorithms
”Conventional” computer vision algorihtms based on OpenVX
specification.

Related work include domain specific languages to represent
image processing pipeline: e.g., Halide (2016), PolyMage
(2016)

Hardware Implementation

Software Implementation

OpenVX Algorithm Design

Application Specification

O
pt

im
iza

tio
n

an
d

Co
de

Ge
ne

ra
tio

n

FPGA’19 4 / 32

Our Approach

Domain Knowledge

Design accelerator architecture by considering image
processing kernel behaviors

Domain Specific Representation and implementataion
Apply algorithm-specific optimizations on the algorithm
graphs

FPGA Design Methodology

Use High Level Synthesis (OpenCL).
Portablity
Maintainability

Apply Hardware specific optimizations

FPGA’19 5 / 32

Outline

1 Motivation

2 Customizable library of vision functions

3 AFFIX framework

4 Evaluation

5 Conclusion and future direction

FPGA’19 6 / 32

Overview of OpenVX

OpenVX

Open, royalty-free standard for cross platform acceleration of
computer vision applications
Performance and power-optimized computer vision processing
Graph-based execution model to enable task and
data-independent execution

FPGA’19 7 / 32

Overview of OpenVX

OpenVX defined objects

Kernel: Abstract representation of a vision functions,
predicates, and delay objects
Node: An instance of a kernel
Virtual Image: Represents an image
Graph: A set of nodes connected in a directed acyclic fashion.

OpenVX Node

OpenVX Node

OpenVX Node

OpenVX Node
Downstream
Application
Processing

Native camera
control/Data
stored in mem-
ory

Graph Construction Graph Verification Graph Execution Graph Deconstruction

Graph Lifecycle

FPGA’19 8 / 32

Customizable library of vision functions

FPGA’19 9 / 32

Vision Function Categorization

Vision functions are categorized based on their data access patterns
We have implemented streaming kernels for each category in OpenCL

Pixel wise

Downsample

Geometric

Statistics

Stencil

Table Lookup

Memory
FPGA’19 10 / 32

Vision Function Categorization

Kernels from OpenVX Specification 1.2

Category Formal Definition OpenVX Vision Function
Pixel-wise out(x , y) = f (in(x , y)) Absolute difference, Accumulate, Accumulate

squared, Accumulate weighted, Addition/sub-
traction, Bitwise operations, Channel combine,
Channel extract, Color convert, Convert bit
depth, Magnitude, Phase, Pixel-wise multiplica-
tion, Threshold, Min, Max

Fixed-rate Stencil out(x , y) =
∑i=k

i=−k
∑j=k

j=−k g(in(x + i , y + j)) Box filter, Sobel, Non-maxima suppression, Cus-
tom convolution, Erode, Dilate, Gaussian blur,
Nonlinear filter, Integral image, Median filter

Multi-rate Stencil out(x , y) =
∑i=k

i=−k
∑j=k

j=−k g(in(Nx + i , Ny + j)) Down-sample, Scale image
Statistical out =

∑i=Width
i=0

∑j=Height
j=0 g(in(i , j)) Histogram, Mean, Standard deviation, Min,max

location
Geometric out(x , y) = in(h(x , y), h′(x , y)) Remap, Warp affine, warp perspective
Table lookup out(x , y) = table[in(x , y)] table lookup
Non-primitive N/A Equalize histogram, Fast corners, Harris corners,

Gaussian image pyramid, Canny edges, LBP,
HOG, HoughLinesP

Categorization of Supported OpenVX vision functions

FPGA’19 11 / 32

Template-based FPGA Kernel Implementation

Templates based on vision function categorization.
Easier testing and optimization (5 cases vs 50+ cases)
Easier to extend OpenVX with user defined functions

Computation

Co
or

di
na

te
s

Memory

Result

Coefficients

Downstream U
ps

tr
ea

m

Computation

Result

ParametersCoefficients

D
ow

ns
tr

ea
m

Geometric (a) Stencil (b)

Computation

Parameters

U
ps

tr
ea

m

Result

D
ow

ns
tr

ea
m

Computation

U
ps

tr
ea

m

Result

Lookup table

U
ps

tr
ea

m

Result

D
ow

ns
tr

ea
m

Pixel-wise (a) Statistical (c) Table lookup (d)

General implementation of different kernel categories

FPGA’19 12 / 32

Template-based FPGA Kernel Implementation

Kernels can be specialized with

Specific compute function (similar to function pointers)
Input and output types (OpenCL standard types)
SIMD size (1 to 32)
Sliding Window size
Local memory configuration (banking, etc.)
Arithmetic precision (double, float and potentially fixed point)

Channels can be specialized with

Channel type and width
Channel depth

FPGA’19 13 / 32

OpenCL Programming Interface

A Domain Specific Language (DSL) on top of OpenCL.
C-style macros are used to instantiate and specialize generic
templates in OpenCL

Up
st

re
am

Computation

Result

ParametersCoefficients

D
ow

ns
tr

ea
m

STENCIL_KERNEL(name, win_size, SIMD_size, kernel_size, in_type, out_type, func, params, in_ch, out_ch)

Vision functions such as Gaussian blur, erode, dilate, and box
filter can be implemented with this template

FPGA’19 14 / 32

OpenCL Programming Interface (Cont’d)

C-style macros are used to instantiate and specialize channels in
OpenCL as well.

Channels are dynamic FIFOs
Kernels communicate through channels

Example
#define SIMD_SZ 8
CHANNEL(ch_con_col , uchar, SIMD_SZ)
CHANNEL(ch_thresh , uchar, SIMD_SZ)
THRESH(ch_conv_col , SIDM_SZ , thresh_val , ch_thresh)

FPGA’19 15 / 32

AFFIX framework

FPGA’19 16 / 32

AFFIX Framework Flow

Automatic generation of accelerator systems from input algoritms.

1 Checks input algorihtm
graph for correctness

Input graph is represented in a
textual format

2 Analysises, paritions, and
optimizes the algorithm
graph

3 Generates code for both
FPGA and CPU
components

Application Model

Graph Verification

Verification

LoweringOpenVX Kernels Info

Lowered Graph

High-level Optimize

Optimized Graph

Pipelining via
Partitioning

CPU PipelinesFPGA pipelines

FPGA ImplementationOpenCL Library

Final Graph (OpenCL)Analysis and Optimization

CPU ImplementationOpenCL Compile

FPGA Bitstream AFFIX Plugin

Code Generation

FPGA’19 17 / 32

AFFIX Framework Flow

Automatic generation of accelerator systems from input algoritms.

1 Checks input algorihtm
graph for correctness

Input graph is represented in a
textual format

2 Analysises, paritions, and
optimizes the algorithm
graph

3 Generates code for both
FPGA and CPU
components

Application Model

Graph Verification

Verification

LoweringOpenVX Kernels Info

Lowered Graph

High-level Optimize

Optimized Graph

Pipelining via
Partitioning

CPU PipelinesFPGA pipelines

FPGA ImplementationOpenCL Library

Final Graph (OpenCL)Analysis and Optimization

CPU ImplementationOpenCL Compile

FPGA Bitstream AFFIX Plugin

Code Generation

FPGA’19 17 / 32

AFFIX Framework Flow

Automatic generation of accelerator systems from input algoritms.

1 Checks input algorihtm
graph for correctness

Input graph is represented in a
textual format

2 Analysises, paritions, and
optimizes the algorithm
graph

3 Generates code for both
FPGA and CPU
components

Application Model

Graph Verification

Verification

LoweringOpenVX Kernels Info

Lowered Graph

High-level Optimize

Optimized Graph

Pipelining via
Partitioning

CPU PipelinesFPGA pipelines

FPGA ImplementationOpenCL Library

Final Graph (OpenCL)Analysis and Optimization

CPU ImplementationOpenCL Compile

FPGA Bitstream AFFIX Plugin

Code Generation

FPGA’19 17 / 32

OpenVX Example: Lane Detection Algorithm

Algorithm

vxThresholdNode Mask vxHoughLinesPNode
Line Segments

Array

Edges vxConvolveNode Bird Eye View vxWarpPerspectiveNode

RGB Image
vxColorConvertNode

(RGB-to-YUV)
YUV Image vxChannelExtractNode Y Image

OpenVX Graph

Input image Grayscale image b_image f _image t_image Highlighted lanes

Lane Detection Algorithm Demonstration (Input video obtained from software.intel.com)

FPGA’19 18 / 32

High-Level Analysis and Optimization

Simplify and optimize OpenVX graphs

Decomposition of OpenVX vision functions into simpler
primitives
Removal of nodes that are not connected to an output node
Separable and symmetric 2D filter implementation
More steps can be incorporated...

vxThresholdNode Mask vxHoughLinesPNode
Line Segments

Array

Edges vxConvolveNode Bird Eye View vxWarpPerspectiveNode

RGB Image
vxColorConvertNode

(RGB-to-YUV)
YUV Image vxChannelExtractNode Y Image

Step 1: Input Lange Detection Algorithm Graph.

FPGA’19 19 / 32

High-Level Analysis and Optimization

Simplify and optimize OpenVX graphs

Decomposition of OpenVX vision functions into simpler
primitives
Removal of nodes that are not connected to an output node
Separable and symmetric 2D filter implementation
More steps can be incorporated...

RGB-to-U U Image Threshold Mask Image HoughLinesP Line Segments Array

RGB-to-V V Image Edges Image Convolve Warped Image

RGB Image RGB-to-Y Y Image Channel Extract Extracted Image warpPerspective

Step 2: Lowered Lane Detection Algorithm. RGB-to-YUV node is replaced with
RGB2Y, RGB2U, and RGB2V nodes. Channel extract node drops U and V images.

FPGA’19 19 / 32

High-Level Analysis and Optimization

Simplify and optimize OpenVX graphs

Decomposition of OpenVX vision functions into simpler
primitives
Removal of nodes that are not connected to an output node
Separable and symmetric 2D filter implementation
More steps can be incorporated...

Threshold Mask Image HoughLineP Line Segments Array

Edges Image Convolve (row) Temp Image Convolve (col) Warped Image

RGB Image RGB-to-Y Y Image warpPerspective

Step 3: Optimized Lane Detection Algorithm

FPGA’19 19 / 32

Graph Partitioning

Algorithm graph is partitioned based on vision functions data
dependencies

FPGA Graph Partitionin

a

g

i

b

h c

d

e

f

a

g

i

b

h c

d

e

f

a

g

i

b

h

c

d

e f

Graph with only
pixel-wise, stencil,
and Lookup nodes
can be fully pipelined.

Statistical Nodes (h,f)
must be last nodes of
any pipeline

Statistical Nodes (h,f)
must be last nodes of
any pipeline

FPGA’19 20 / 32

Graph Partitioning

Not all vision functions are accelerated on the FPGA
Kernels with irregular data access
Kernels with high resource usage or complex implementations

Heterogeneous Graph Partitioning

a

g

i

b

h

c

d

e

f

Graph partitioning in case of CPU nodes: predecessors and successors of CPU
nodes(h,f) cannot be mapped to a same pipeline.

FPGA’19 21 / 32

Graph Partitioning of Lane Detection Example

FPGA partitions are implemented in OpenCL
Partitions are executed in topological order.

Hough Sink Threshold Conv Row Conv Col

Host Src RGB2Y Save
Load

Warp

Kernel Host Channel FPGA Channel
FPGA Partitions CPU Partition

Lane Detection Partitioning

FPGA’19 22 / 32

FPGA Partitions are described in OpenCL

#define SIMD_SZ 8
#define WIN_SZ 240

// Partition 1
CHANNEL(ch_in, uint, SIMD_SZ)
CHANNEL(ch_y, uchar, SIMD_SZ)
SRC(ch_in)
RGBTOY(SIMD_SZ ,ch_in,ch_y)
SAVE(ch_y)

// Partition 2
CHANNEL(ch_warped , uchar, SIMD_SZ)
CHANNEL(ch_conv_row , uchar, SIMD_SZ)
CHANNEL(ch_con_col , uchar, SIMD_SZ)
CHANNEL(ch_thresh , uchar, SIMD_SZ)
float[9] conv_col = {...};
float[3] conv_row = {...};
WARP_LOAD(ch_warped , SIMD_SZ)
CONV_ROW(ch_warped , ch_conv_row , 9, conv_row , ...)
CONV_COL(ch_conv1 , ch_con_col , 3, conv_col , ...)
THRESH(ch_conv_col , SIDM_SZ , thresh_val , ch_thresh)
SINK(ch_thresh)

Simplifed OpenCL Implementation of Lane Detection

FPGA’19 23 / 32

Software components are described in C++

They implement Algorithm class interface:
Describe both hardware and software pipeline and their
ordering
Implement pre- and post- processing steps for each partition
Guide OpenCL runtime (Memory allocation, etc)
USes OpenCV to implement CPU vision functions

FPGA’19 24 / 32

Overall System Components

OpenCL run-time/PCIe driver

Host Program (Developed in C++)

HW component (.aocx) SW plugin (.so)

HW code (.cl) SW Code (cpp)

$aoc [flags] $g++ -shared -fPIC

$host path-to-aocx-file path-to-so-file input-stream [flags]

Compilation

Runtime System

Software Components

FPGA’19 25 / 32

Evaluation

FPGA’19 26 / 32

Evaluation: Workload and Platform Characterization

Diverse set of vision algorithms developed
Application domain, number of vision functions, and
combination of vision function types

Benchmark Domain No
VX
Fns

No Ex-
tension
Fns

No
CPU
Fns

No
Geo
Fns

No
Stats
Fns

No Graph
Partitions

Canny Edges Image Processing 1 0 1 0 0 2
Automatic Con-
trast

Image Processing 6 0 0 0 1 2

Lane Detection Image Processing 6 0 0 1 0 3
Color Copy Color Printing 42 4 1 0 0 3
Census Trans-
form

Visual Descriptor 4 1 0 0 0 1

SIFT keypoints Visual Descriptor 116 2 0 0 0 1

Workload Characterization

Test Platfrom Spec
Intel Arria-10GX board connected to host with Intel Core i7 4770
processor via PCIe Gen3x8.

FPGA’19 27 / 32

Evaluation: Results

12 4 8 16 32
250
300
350
400

SIMD SIZE

Fm
ax

(M
H

z)

12 4 8 16 32
20
40
60
80

SIMD SIZE

Lo
gi

c
(%

) Canny Edges
Auto contrast

Lane Detection
Color Copy

Census Transform
SIFT Keypoints

12 4 8 16 32
0

20
40
60
80

SIMD SIZE

D
SP

(%
)

12 4 8 16 32
0

20
40
60
80

SIMD Size
M

em
or

y
(%

)

Arria 10 Resource utilization and FMax

1 No significant drop on FMax by increasing SIMD size

2 Resources usage grows linearly by increasing SIMD size

FPGA’19 28 / 32

Evaluation: Results

12 4 8 16 32
250
300
350
400

SIMD SIZE

Fm
ax

(M
H

z)

12 4 8 16 32
20
40
60
80

SIMD SIZE

Lo
gi

c
(%

) Canny Edges
Auto contrast

Lane Detection
Color Copy

Census Transform
SIFT Keypoints

12 4 8 16 32
0

20
40
60
80

SIMD SIZE

D
SP

(%
)

12 4 8 16 32
0

20
40
60
80

SIMD Size
M

em
or

y
(%

)

Arria 10 Resource utilization and FMax

1 No significant drop on FMax by increasing SIMD size

2 Resources usage grows linearly by increasing SIMD size

FPGA’19 28 / 32

Evaluation: Results

Benchmark Input Size CPU
(AVX+8
Cores)

FPGA
SIMD=1

FPGA
SIMD=2

FPGA
SIMD=4

FPGA
SIMD=8

FPGA
SIMD=16

FPGA
SIMD=32

Canny Edges 3840x2160x1 15 ms 28 ms 15 ms 8 ms 5 ms 4 ms 4 ms
Automatic
Contrast

3840x2160x4 21 ms 84 ms 45 ms 22 ms 13 ms N/A N/A

Lane Detec-
tion

3840x2160x4 46 ms 57 ms 27 ms 14 ms 12 ms N/A N/A

Color Copy 3840x2160x4 83 ms 45 ms 32 ms 23 ms 19 ms N/A N/A
Census Trans-
form

3840x2160x4 12 ms 27 ms 14 ms 7 ms 4 ms 3 ms 3 ms

SIFT key-
points

3840x2160x1 223 ms 56 ms 27 ms 14 ms 10 ms 10 ms N/A

Average total execution time of CPU only vs CPU(Intel Core i7)+Arria10 accelerated
algorithms with different SIMD sizes

SIMD_SIZE is limited by PCIe width (256 bits)
FPGA performance increases linearly by improving SIMD until
hitting PCIe max bandwidth (Gen3x8)

FPGA’19 29 / 32

Conclusion and future direction

FPGA’19 30 / 32

Conclusion

Contributions

1 Library of costumizable OpenVX vision functions
implementated in OpenCL

Support for a wide variety of OpenVX vision elements
(functions, data types, control structures)
Extendable with new user defined functions

2 Algorithm graph and low level hardware optimization
3 Heterogeneous Graph partitioning and implementation

Salable and efficient hardware generation
Ease of development

FPGA’19 31 / 32

Future Direction

Power and energy optimization
More sophisticated CPU scheduling using multiple processor
cores
Neural Network Integration

Questions?
contact sajjadt@uci.edu

This work is supported by the Intel Corp.

FPGA’19 32 / 32

	Motivation
	Customizable library of vision functions
	AFFIX framework
	Evaluation
	Conclusion and future direction

