The Network Management Unit (NMU): Securing Network Access For Direct-Connected FPGAs

Daniel Rozhko and Paul Chow

High-Performance Reconfigurable Computing Group · University of Toronto

February 26th, 2019

FPGAs in Datacenters

 FPGAs are increasingly being deployed in datacenter and cloud environments

2

FPGAs in Datacenters

- FPGAs are increasingly being deployed in datacenter and cloud environments
- Major deployments are available by many vendors:

High-Performance Reconfigurable Computing Group · University of Toronto

Traditional FPGA Connectivity Model – Accelerator

Traditional FPGA Connectivity Model – Accelerator

High-Performance Reconfigurable Computing Group · University of Toronto

Increasingly Deployed Model – Direct-Connected FPGA

6

Increasingly Deployed Model – Direct-Connected FPGA

Network connectivity must be explicitly secured in hardware

High-Performance Reconfigurable Computing Group · University of Toronto

Securing Network Access for FPGAs

• Why do we need to secure network connectivity?

8

Securing Network Access for FPGAs

- Why do we need to secure network connectivity?
- Multi-user or multi-tenant environments
 - Multiple applications can affect/observe network behaviour
- Un-trusted users (i.e. in cloud-like deployments)

- Network (potentially) exposed to errant or malicious behaviour

9

Analogue – Memory Management Unit (MMU)

An analogous shared resource – memory

Analogue – Memory Management Unit (MMU)

An analogous shared resource – memory

MMU provides for each application:

- isolation to specific parts of memory
- rejection of invalid requests

The Network Management Unit (NMU)

Introducing the NMU

High-Performance Reconfigurable Computing Group · University of Toronto

The Network Management Unit (NMU)

Introducing the NMU – securing network connectivity

Outline

- Motivation for NMU
- NMU Architecture Types
- Our Hardware Implementation
- Evaluation of NMU Types
- Conclusions

Outline

- Motivation for NMU
- NMU Architecture Types
- Our Hardware Implementation
- Evaluation of NMU Types
- Conclusions

High-Performance Reconfigurable Computing Group · University of Toronto

Previous Work – Hardware

- Network security schemes from previous FPGA works
 - Packet encapsulation
 - MAC source address replacement
 - Full network switch in soft-logic
 - e.g. OpenFlow switch on FPGA

Previous Work – Hardware

- Network security schemes from previous FPGA work
 - Packet encapsulation (1)
 - MAC source address replacement (2)
 - Full network switch in soft-logic (3)
 - e.g. OpenFlow switch on FPGA

• Either very simplistic (1,2) or high utilization (3)

Previous Work – Software

- Firewalls
 - Network Access Control Lists (NACL)
 - Both Source and Destination Address ACLs
- Virtualization
 - VLAN (tag-based), VXLAN, NVGRE (encapsulation-based)
- Hairpinning

- Pushing securitization to another switch or appliance

- Four main considerations identified for NMU design
 - I) Access Controls Implemented
 - 2) Support for Internal Routing
 - 3) Virtual Networking Functionality
 - 4) Network Layer of Operation

Q

- Four main considerations identified for NMU design
 - I) Access Controls Implemented

ACLs can be implemented in the NMU, or in the downstream physical switch

- ACLs can be implemented in the NMU, or in the downstream physical switch
- Our classification of NMU Types:

Type A \rightarrow no ACLs implemented in NMU (802.1Qbg, 802.1pr)

- ACLs can be implemented in the NMU, or in the downstream physical switch
- Our classification of NMU Types:

Type A \rightarrow no ACLs implemented in NMU (802.1Qbg, 802.1pr)

Type $B \rightarrow$ Sender Address ACLs only in NMU

- ACLs can be implemented in the NMU, or in the downstream physical switch
- Our classification of NMU Types:

Type A \rightarrow no ACLs implemented in NMU (802.1Qbg, 802.1pr)

Type $B \rightarrow$ Sender Address ACLs only in NMU

Type C \rightarrow Sender and Destination Address ACLs in NMU

2

- ACLs can be implemented in the NMU, or in the downstream physical switch
- Our classification of NMU Types:

Type A \rightarrow no ACLs implemented in NMU (802.1Qbg, 802.1pr)

Type $B \rightarrow$ Sender Address ACLs only in NMU

Type C \rightarrow Sender and Destination Address ACLs in NMU

Type $E \rightarrow$ Encapsulation, no ACLs necessary

High-Performance Reconfigurable Computing Group · University of Toronto

- Four main considerations identified for NMU design
 - 2) Support for Internal Routing

- Four main considerations identified for NMU design
 - 3) Virtual Networking Functionality

- Four main considerations identified for NMU design
 - 4) Network Layer of Operation

Outline

- Motivation for NMU
- NMU Architecture Types
- Our Hardware Implementation
- Evaluation of NMU Types
- Conclusions

2

High-Performance Reconfigurable Computing Group · University of Toronto

Principal Hardware Sub-Components

- Three main reusable sub-components
 - a) Packet Parsers
 - b) Encapsulator/Tagger
 - c) De-Encapsulator/De-Tagger

3

Traditional Packet Parsers

• Traditional packet parser system:

• Traditional packet parser, but with processing done in flight

3

• Traditional packet parser, but with processing done in flight

• Traditional packet parser, but with processing done in flight

• Traditional packet parser, but with processing done in flight

Encapsulators/Taggers

• Packet split into segment FIFOs, read out with inserted data

Ď

De-Encapsulators/De-Taggers

Data to be removed from packet never inserted into FIFOs

• Type B-L2 NMU (source ACLs, MAC layer processing)

• Type B-L2 NMU (source ACLs, MAC layer processing)

3

• Type B-L2 NMU (source ACLs, MAC layer processing)

• Type B-L2 NMU (source ACLs, MAC layer processing)

Type C-L2 NMU (source & dest ACLs)

2

• Type CR-L2 NMU (adding internal routing)

Ť

Type CR-L2 NMU (adding internal routing)

interconnect

Type CR-L4 NMU (expanding to layer 4 packet processing)

High-Performance Reconfigurable Computing Group · University of Toronto

Ď

• Type A (tagging) and Type E (encapsulation)

tag/encap on egress de-tag/de-encap on ingress

• Type A (tagging) and Type E (encapsulation)

February 26th, 2019

ĕ

The Universal NMU

Add encap/de-encap components to L4 NMU architecture

Multi-Tenant Considerations

- Can have multiple applications on one FPGA
 - NMU needs to secure multiple logical connections separately
 - We implement NMUs with 32 logical connections

0

Outline

- Motivation for NMU
- NMU Architecture Types
- Our Hardware Implementation
- Evaluation of NMU Types
- Conclusions

5

Evaluation Setup

• What qualities of NMUs characterize its performance?

Evaluation Setup

- What qualities of NMUs characterize its performance?
 - Throughput (I0Gbps line-rate, no need to measure)
 - Area (need to measure LUT/FF utilization)
 - Latency (need to measure cycles added in ingress/egress path)
 freq. =156.25 MHz (freq. of Ethernet controller)

5

Evaluation Setup

Four simple hardware applications on one FPGA

- Configured over PCIe
- 32 logical connections
 - 4 applications x 8 connections
- Kintex Ultrascale XCKUI15

53

Area Comparison

Area Comparison

Not much difference in utilization between NMU Types

Ď

Area Comparison

Overhead of Universal NMU is about 3-4x (but still small) Ď

February 26th, 2019

Area Comparison

4.0% 3.47% LUTs 3.5% FFs 3.0% 2.5% Utilization (%) 2.0% 1.5% 1.23% 1.12% 1.09% 0.92% 1.0% 0.61% 0.38% 0.33% 0.32% 0.5% 0.33% 0.0% Type CR-L2 Type ER-L2 Type A-etag Type BR-L2 Universal **NMU Type**

Latency (cycles)

	Egress	Ingress
Type A-etag	1	4-6
Type BR-L2	5-10	6-8
Type CR-L2	5-10	6-8
Type ER-L2	6-7	8-10
Universal	13-18	19-25

Impact on latency of Universal NMU is more pronounced 5

Ď

NMU Evaluation – Routability

Area Comparison:

	Without Routing		With Routing		Overhead	
	LUTs	FFs	LUTs	FFs	LUTs	FFs
Type B-L2	3516	2883	7199	4311	2.04x	I.50x
Type C-L2	3687	2867	7424	4378	2.01×	I.53x
Type E-L2	3392	3113	6133	4316	1.81x	1.39x

NMU Evaluation – Routability

Latency Comparison (in cycles):

	Without Routing		With Routing		Overhead	
	Egress	Ingress	Egress	Ingress	Egress	Ingress
Type B-L2	I-6	2-4	5-10	6-8	4 cycles	4 cycles
Type C-L2	I-6	2-4	5-10	6-8	4 cycles	4 cycles
Type E-L2	I	4-6	6-7	8-10	5-6 сус.	4 cycles

NMU Evaluation – Network Layer

Area Comparison

Overhead of IP Layer inspection significant, but not significant for Transport Layer

6

February 26th, 2019

NMU Evaluation – Network Layer

Area Comparison

Universal NMU overhead is still high, 1.8-2x Þ

6

NMU Evaluation – Network Layer

Area Comparison

Latency (cycles)

	Egress	Ingress
Type CR-L2	5-10	6-8
Type CR-L3	6-11	7-12
Type CR-L4	6-11	7-12

Not much difference in latency

6

2

P

NMU Variety Evaluation Summary

- Area
 - Routability has biggest impact on area utilization
 - Jumping from MAC to IP processing also has a big impact, though the jump from IP to Transport protocol is less severe
 - All implementations have low area overhead
- Latency
 - Routability has single biggest impact on latency as well
 - Universal NMU has a big latency hit

Universal NMU Scalability

Scaling Number of Logical Connections

Universal NMU Scalability

Scaling Number of Logical Connections

Outline

- Motivation for NMU
- NMU Architecture Types
- Our Hardware Implementation
- Evaluation of NMU Types
- Conclusions

Conclusions

- The NMU is a low overhead network security solution for direct-connected FPGAs, across many configurations
- Differences between NMU configurations are quite small, though Universal NMU does add significantly more latency
- Universal NMU can scale to 256 connections, with area hit
- Universal NMU effectively implements all NMU functionalities identified, may be candidate for hardening

Acknowledgments

We'd like to thank and acknowledge Xilinx, Hauwei, and NSERC for the funding, material, and support provided for this project

6

Questions?

rozhkoda@eecg.toronto.edu

6

9

February 26th, 2019