Simultaneous Placement and Clock Tree Construction

for Modern FPGAs

Wuxi Li' Mehrdad E. Dehkordi 2 Stephen Yang? David Z. Pan'*

Electrical & Computer Engineering, University of Texas at Austin

2Vivado Implementation Team, Xilinx Inc.

© TEXAS £ XILINX.

The University of Texas at Austin

1/29

Outline 'Il,'

Introduction
Proposed Algorithms
Experimental Results

Conclusion

2/29

Outline 'Il,'

Introduction

3/29

Placement for Modern FPGAs

)

Input A netlist of cells (LUT, FF, DSP, RAM, ..
Output Cell physical locations in the FPGA layout

Objectives Wirelength, timing, power, routability, . . .

Constraints Clock network feasibility, . ..

nopopoo|ooEEom

4 g |DoDooo|oEEoEm

$ ¢ |oooooo|oooEoo

Rl | [| G| |Gt aeaa
SIFCRIS] [=[=]=i=[=Ta] [=[a=[=Tal=)
[S]|5|S[S[S]S| [S]S|S|S|u|s

(e [| e Eeees
EEEEEE FEEEEE EEEEEE
[S|S[S[S|S[5| [S|S[SIS|s|5| [S|S[S{E|S]s]
Dofood|ogooog|ooooog
Ban|nrr| [Ennn| | arle)|
Dofood|ogooogd|ooCoog
[S|S[S[S|S[5| [S|S[SIS|s|5| [S|S[S{E|S]s]
EEEEEE [SEEEEE] EEEEEE
[oonnn| (S]]]|
[S[S[S[S]S[s| |S[E[SIS]s[s| [S[S[S{S[S[s|
[S|S|S[S]S]5| [S|S|S|S]S|s| [S]S[S{S|S]s|
zzez Erzzzd | ez e | ez)
[S[S[S[S]S[5| |S[E[SS]s[s| [S[S[S{S[=]s|
[S[S[S[E|s|s| [S|S[S|u]s|s| [S|S{S{s|s]s]
BEEEBEE|REEEEE|BEEEEE
[usa[eeen [Ssa[mseen| (S uss|
S[S[S[S]s[s| [S[E[S|s]s[s| [S[S[S{S[=]s|
[S|S|S[S|S]5| [S|S[S|S|s|s| [S|S[S{S]S]s|
e przzzd | ezl bereed) | vz ez
[S[S[S[S]S[s| [S[E[SS]s[s| [S[S[S{S[S]s|
[S[S[S[E|s|s| [S|S[S|u|s|s| [S|S{S{E|s]s]
[SSIS|S]S]5] |S|S]|S|S]s|s] [S|S|S]S]s]s]

[7l cLB [] DSP [ram] 1/0

4/29

Xilinx UltraScale Clocking Architecture 'I]"

» Layout is divided into a grid of clock regions (CRs)

» Clock network consists of routing Layer (HR/VR) and distribution Layer (HD/VD)
» 24 HR/VR/HD/VD tracks in each CR

» Clock tree consists of D-layer vertical trunk tree + R-layer 2-pin route

s LA

N
s Clock %.] = o
= Region 5 E
g g
o - ; =
. = X d
2R N~ g
 z5 i .

% T 4 CR has clock source

Q 24 VR tracks [CR has clock loads

24 VD tracks) HR/VR 1 HD/VD

5/29

Problem Statement "]"

Simultaneous Placement and Clock Tree Construction Problem

Input A netlist of cells

Output A global placement solution
A clock routing solution

Objectives Min. wirelength

Constraints No logic resource overflow
No clock routing overflow

6/29

Previous Works "["

Simulated annealing-based approach
>
» Incorporating clock cost in objective
» Generic to any clocking architecture
» Slow convergence

Bounding box-based approach
> b b
» Greedily shrinking clock net bounding boxes to reduce overflow
» Cheap computation and fast convergence
» Often overestimates clock routing demand

of] of []8 ol 8

Bounding box Clock tree 7/29

Our Contribution 'If'

» Explicit clock tree construction

» Solution space of clock routing — tree space
Clock routing — tree space exploration process

» Inspired by branch-and-bound idea, an iterative algorithm is proposed to efficiently explore the
tree space

» A Lagrangian relaxation-based clock tree construction technique is also proposed to achieve
feasible clock routing solutions

» Experiments demonstrate the effectiveness/efficiency of our approach over previous works.

8/29

Outline 'Il,'

Proposed Algorithms

9/29

Overall Flow -III-

v |
Quadratic Clock network CR-wise rough
programming planning legalization
(min. wirelength) (honor clock constr.) (spread cells)

10/29

Overall Flow -III-

11/29

Clock Network Planning Problem 'Il"

v I
Quadratic Clock network CR-wise rough
programming planning legalization
(min. wirelength) (honor clock constr.) (spread cells)
Problem Statement Mathematical Formulation
Input A placement produced by min Z Z Dy,r - Xv,r,
quadratic programming VEVrER
Output A cell-to-CR assignment s.t. x,r €{0,1},Yw € V,Vr e R,
A clock routing solution ox,=1,weV,
Objectives Min. cell displacement rer
1 H v Ay < Iy 5
Constraints No logic resource overflow Vez;A o S CryVr€R

N SRS ey @i Exist a legal clock routing w.r.t. x.

12/29

Branch-and-Bound Idea

The
Unconstrained
Optimum
[¢)) o060
o [y] O o oo
Py ° oo""ooooo\;
® 0 © o 0o 0 0
e 0o o o e
[o0 o060 0 0
[¢] Qoo o o (J]
P;ille @ 0% 0 ¢ o\ooop4
c 0 e 000 e 0
e e 0 0 0 e 0o 0

Problem Properties

» Integer minimization problem with
complex constraints

» Hard to solve directly

» Can be efficiently solved by
relaxing some constraints

B&B Algorithm

» Keeping solving the relaxed
problem in iteratively branching
spaces

» Tracking the lowest cost of feasible
solutions found as the upper bound
of optimum

» Pruning branches with lower bound
costs worse than this upper bound

13/29

Clock Network Planning Algorithm T

ﬁ

14/29

Clock Network Planning Algorithm

¥

(COSt*a (E*, '7*) <~ (+OO,) _)
Ker 1
stack.push(x(?))

¥

[K <« stack.fetch_top()](—

¥

‘ cost(F) z(®) ‘

cell-to-CR assign. with &

¥

(~(®) + clock routing of (%)]

e
No (<& f(t%> 1Yes

if cost(®) < cost*

! £ - * *
K’ from k update (cost*, z*,v*)

v

d(:‘,l'i\'(:‘ new constr. }

1

push ¥/ € K’
into stack

remove k' € K’ with
LB cost > cost*

cost* The best feasible cost found
x* The best feasible cell-to-CR assignment
y* The best feasible clock routing

ke, Binary values to represent whether cells

in clock net e can be assigned to CR r

}

Initialization
» Set the best solution found as NONE
> Allow any cell-to-CR assignment (x®)
> Initialize the stack with only x©

15/29

Clock Network Planning Algorithm 'Il"

(cost™, z*,v*) + (400, —, —)

©] Cell-to-CR assignment problem
Ke,r <
stack.push(x(?)) » Relax the clock constraint
v » Solve the clock-unconstrained version of the
[K < stack.fetch_top() }7 original problem in subspace
v
cost(™) | z(F) ;
‘ cell-to-CR assign. with & min. Z Z Dy X,
¢ vEV reR
: 5 s.t. v €{0,1}, Vv € V,Vr € R,
(~(%) « clock routing of z(*)) A0S { ’ }7 Ve re

Sae=1Wwev,

- // .\\ - >
No — < 4" is feasible? > — Yes
(\7/ 1 ZAV * Xv,r S Cr,Vr c R,

vey

derive new constr. }

if cost(®) < cost* |
S update (cost*,z*,v*) Exist a lega ing w.r.t. x.
¥ ,

remove k' € K’ with push v’ € K’ Xy,r = O,V(V, r) € {36 S S(V) S.t. ke = 0}.
LB cost > cost*

into stack

16/29

Clock Network Planning Algorithm

(cost™, x*,v*) <

0
D)

(400, —, —)
1

stack.push(x(?))

¥

(K < stack.fetch_top()

¥

cost(™) | z(F)
cell-to-CR assign. with <

¥

[~(®) + clock routing of (%))

¥

r

MORE f(w 1Yes

J(_

derive new constr.
K’ from

if cost(F) < cost*

update (cost*,z*,

)

remove k' € K’ with
LB cost > cost*

push ¥/ € K’
into stack

}

Cell-to-CR assignment problem
» Can be nearly optimally solved by a
minimum-cost flow approximation

Dy, J0, Je€&(v)st. kepr=0
o0, otherwise

16/29

Clock Network Planning Algorithm 'Il"

(cost*, x*,v*) « (4o00,—,—)
RO« 1 D-layer clock tree candidates generation
stack.push(x(?)) » Each D-layer clock is a vertical trunk tree
v » There are m candidates for each clock on a
[K < stack.fetch_top() j(— CR grid with m columns

¥

cost() x(®)
cell-to-CR assign. with &

» Total of m|€| clock tree candidates

v
[(%)« clock routing of z(*) J T
No whw Yes s
(o 1 alm— ammm—_— aEness———

derive new constr.
K’ from

if cost(F) < cost*
update (cost™, z*,~*)

remove k' € K’ with push k' € K’
LB cost > cost* into stack

17/29

Clock Network Planning Algorithm

(cost*, x*,v*) < (400, —, —)
(0)
Ker <+ 1

stack.push(x(?))

¥

[K <« stack.fetch_top() j(—

cost() x(®)
cell-to-CR assign. with &

¥

[fy("‘) <+ clock routing of 2(r) J

Nolf *hw —lYes

if cost(F) < cost*

derive new constr.
K’ from

update (cost™,x*,

oo

push ¥/ € K’
into stack

remove k' € K’ with
LB cost > cost*

}

Clock tree candidate selection problem

» Minimize a topology-dependent cost

» Capacity constraints make the problem
intractable

» Feasible solution may not exist

mln. Z(’bt 2ty

teT
st 2 €e{0,1},VreT,
Z z=1,Ve € &,

teT (e)

> Hy -z <24VreR,
teT

> Vir-u<24,VreR.
teT

¥

17/29

Clock Network Planning Algorithm 'Il"
Lagrangian relaxation of the candidate selec-
tion problem
» Relax the capacity constraints and introduce
Lagrangian multipliers A

(cost*,x*,v*) < (400, —, —)
(0)
Ker <+ 1

ST&(,]QDHN]](H(“))

¥
[K <« stack.fetch_top() j(— > lteratively solve the relaxed problem and
v update A until it converges
‘ cost(t) ¢(F) ‘
cell-to-CR assign. with & min. Z(d)t +X) -z,
‘l‘ * teT
[(%)« clock routing of z(*) J st z € {0,1},Vr € T,

/\ Z T = I’Ve € 57
No wﬁw Yes €T (e)
(—l <247 € R,

t,r
derive new constr. if cost(®) < cost* =
oL - *
K' from update (cost*, z*,v*)
< 2457 e R.

remove k' € K’ with push k' € K’ g
LB cost > cost* into stack
17/29

Clock Network Planning Algorithm 'Il"

(cost™, %, 1) <+]°“‘ =) If clock routing v(*) is feasible
Ke,r <= . . .
stack.push(s() > Update the best solution if cost*) is better
1 than the previous best cost*
% < stack.fetch_top()](» Fetch the next « in the stack to explore other
[7 subspaces (branches)

cost() x(®)
cell-to-CR assign. with &

¥

[~(®) + clock routing of (%))

v
No (~(#) is feasible? 1Yes

derive new constr. if cost(®) < cost*
K' from k update (cost*,z*,~v*)
¥

remove k' € K’ with push k' € K’
LB cost > cost* into stack

18/29

Clock Network Planning Algorithm T

(cost*, x*,v*) < (400, —, —)

K f:,[.],)‘ — 1

Derive new constraints ' € K’ from &

.
o () > Each «' is a subspace of x

) » Want " € K’ can encourage more
[% < stack.fetch_top() j(clock-friendly cell-to-CR assignment
¥ > Forbid some cell-to-CR assign. that can

cell-to-CR assign. with &

¥

[~(®) + clock routing of (%)]

No Yes s
L
7 7
7)
7)

[derive new constr. } 7

‘ cost(®)_z(®) L ‘ potentially reduce clock overflow on top of x

¥

~(%) s feasible?

ol ol
B
8
8
Y R
NN
N
NN

if cost(®) < cost* et =1
/
K’ from s update (cost™, z*,~v*)

remove k' € K’ with push ' € K’ %
LB cost > cost* into stack —

w7
A
%4

19/29

Clock Network Planning Algorithm

(cost*, x*,v*) « (4o00,—,—)
(0)
Ker <+ 1

stack.push(x(?))

¥

(K < stack.fetch_top()

¥

cost(®) g(®)
cell-to-CR assign. with &

¥

(~(®) + clock routing of (%))

Yes

No(<w f(w1

}7

derive new constr.
K’ from k

update (cost*,z*

if cost(®) < cost*
,Y)

¥

push ¥’ € K’
into stack

remove k' € K’ with
LB cost > cost*

}‘

Remove suboptimal subspaces «' € K’

» We can safely prune subspaces with LB
costs no better than cost*

costis(k) = g min D, .
{réR|ke,r=1,VeeE(V)}
vev ’
min. E E D, xy,,

vVEV reR

st x,€{0,1},YweV,VreR,
wa =1,YWweV,
reR

v <

P

~Vr € R,
vE

Xor = 0,Y(v,r) € {Je € E(v) s.t. Ke,r =0}
20/29

Outline 'Il,'

Experimental Results

21/29

Experimental Setup 'Il"

Implemented in C++ on top of placement framework
Linux, Intel Core i9-7900X CPUs (3.30 GHz and 10 cores) and 128 GB RAM
Routed by Vivado v2016.4

ISPD 2017 contest benchmark
» Xilinx UltraScale architecture
» 0.5M - 1.0M cells
» 32 - 58 clock nets

22/29

Comparison with Other State-of-the-Art Placers

Achieved the best routed WL with feasible clock routing

» On average, outperforms [Li+, TODAES 18]/ [Kuo+, ICCAD 7]/ [Pui+, ICCAD 7]/ [Li+,

TCAD 18] by 4.3% / 0.5% / 2.0% / 1.4% in routed WL

Norm. Routed WL

I OLi+ TODAES 18 I [Kuo+ 1CCAD’17 |:| 0 Pui+ 1CcCcAD’17
II Li+ TCAD’18 |:||:| Proposed

o\"&

I T C I CRIC I T
T R A A U U U
PPN P AP AP P AP P AP P

&

N Qbr ol (s} A P Y yv\:b

PV
K
e

7

OO O OO OO o4

23/29

Comparison with Other State-of-the-Art Placers {2

Achieved the best runtime

> On average, runs 2.70 < / 1,64 / 2.66 - faster than [Li+. TODAES 18]/ [Pui+, [CCAD17]/ [Li+,
TCAD'18]

» [Kuo+, ICCAD17] did not report placement runtime

| I 0 ri+ TODAES 18 |:| [Pui+ 1cCAD’17 I O ri+ TcAaD’18 |:| [Proposed ‘

Norm. Routed WL
— N
T T
=

24/29

Comparison Under Different Clock Capacities (CC)

Apple-to-apple comparision with [Li+, TODAES 18] under different CC

| I JLi+ TODAES 18 D [Proposed ‘ | I [Li+ TODAES’18 |:| [Proposed ‘ | I O Li+ TODAES’ 18 |:| [Proposed ‘
=
= g ‘
el) §
9] @ k=1
Pt 0
3 Q 5
< S ~
~ 3 ;
. n g
g W 5
—
o Z
4

24 12 8 7 6
Clock Capacity

5

24 12 8 7 6
Clock Capacity

5

1

24 12 8 7 6 5
Clock Capacity

25/29

Branch-and-Bound Tree Exploration

» First 30 feasible solutions found in clock network planning algorithm
» The best solution among them is achieved at #27, which is 4% better than #1

5 106
: : : :
- e Lower-Bound Cost
2.8 3 = Actual Cost
..I ..I
= 2.67 u n u --...-. ..-%
8 = .. ™] | N
(@) 247 [] ([FYXXEKX XN |
... o0 © o0
[]
2.2 Y . s
2 | | | | | ° |
0 5) 10 15 20 25 30

Legal Solution Number

26/29

Outline 'Il,'

Conclusion

27/29

Conclusion 'If'

» A generic FPGA placement framework that simultaneously optimizes placement quality and
ensures clock feasibility by explicit clock tree construction

» The proposed framework significantly reduces the placement quality degradation while
honoring the clock feasibility for designs with high clock utilization

» A branch-and-bound-inspired clock network planning algorithm and a Lagrangian
relaxation-based clock tree construction technique are proposed

» The proposed approach outperforms other state-of-the-art approaches in routed wirelength with
competitive runtime

28/29

Thank Youl!

29/29

	Main Talk
	Introduction
	Proposed Algorithms
	Experimental Results
	Conclusion

	anm0:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

