Simultaneous Placement and Clock Tree Construction for Modern FPGAs

Wuxi Li¹ Mehrdad E. Dehkordi² Stephen Yang² David Z. Pan¹

¹Electrical & Computer Engineering, University of Texas at Austin

²Vivado Implementation Team, Xilinx Inc.

Introduction

Proposed Algorithms

Experimental Results

Conclusion

Introduction

Proposed Algorithms

Experimental Results

Conclusion

Ψ

Input A netlist of cells (LUT, FF, DSP, RAM, ...) Output Cell physical locations in the FPGA layout Objectives Wirelength, timing, power, routability, ... Constraints Clock network feasibility, ...

Xilinx UltraScale Clocking Architecture

Ψ

- Layout is divided into a grid of clock regions (CRs)
- Clock network consists of routing Layer (HR/VR) and distribution Layer (HD/VD)
- 24 HR/VR/HD/VD tracks in each CR
- Clock tree consists of D-layer vertical trunk tree + R-layer 2-pin route

Simultaneous Placement and Clock Tree Construction Problem

Input A netlist of cells Output A global placement solution A clock routing solution Objectives Min. wirelength Constraints No logic resource overflow No clock routing overflow

Previous Works

Simulated annealing-based approach

- [Lamoureux+, TRETS'08]
- Incorporating clock cost in objective
- Generic to any clocking architecture
- Slow convergence

Bounding box-based approach

- [Kuo+, ICCAD'17], [Pui+, ICCAD'17], [Li+, TODAES'18]
- Greedily shrinking clock net bounding boxes to reduce overflow
- Cheap computation and fast convergence
- Often overestimates clock routing demand

Bounding box

- Explicit clock tree construction
- Solution space of clock routing → tree space Clock routing → tree space exploration process
- Inspired by branch-and-bound idea, an iterative algorithm is proposed to efficiently explore the tree space
- A Lagrangian relaxation-based clock tree construction technique is also proposed to achieve feasible clock routing solutions
- Experiments demonstrate the effectiveness/efficiency of our approach over previous works.

Introduction

Proposed Algorithms

Experimental Results

Conclusion

Overall Flow

Problem Statement

Input A placement produced by quadratic programming Output A cell-to-CR assignment A clock routing solution Objectives Min. cell displacement Constraints No logic resource overflow No clock routing overflow

Mathematical Formulation \min_{x} $\sum_{v \in \mathcal{V}} \sum_{r \in \mathcal{R}} D_{v,r} \cdot x_{v,r},$ s.t. $x_{v,r} \in \{0, 1\}, \forall v \in \mathcal{V}, \forall r \in \mathcal{R},$ $\sum_{r \in \mathcal{R}} x_{v,r} = 1, \forall v \in \mathcal{V},$ $\sum_{v \in \mathcal{V}} A_v \cdot x_{v,r} \leq C_r, \forall r \in \mathcal{R},$ Exist a legal clock routing w.r.t. x.

Branch-and-Bound Idea

Problem Properties

- Integer minimization problem with complex constraints
- Hard to solve directly
- Can be efficiently solved by relaxing some constraints

B&B Algorithm

- Keeping solving the relaxed problem in iteratively branching spaces
- Tracking the lowest cost of feasible solutions found as the upper bound of optimum
- Pruning branches with lower bound costs worse than this upper bound

cost*	The best feasible cost found
<i>x</i> *	The best feasible cell-to-CR assignment
γ^*	The best feasible clock routing
$\kappa_{e,r}$	Binary values to represent whether cells
	in clock net e can be assigned to CR r

Initialization

- Set the best solution found as NONE
- Allow any cell-to-CR assignment ($\kappa^{(0)}$)
- Initialize the stack with only $\kappa^{(0)}$

Cell-to-CR assignment problem

- Relax the clock constraint
- Solve the clock-unconstrained version of the original problem in subspace κ

$$\begin{split} & \underset{x}{\text{nin.}} \quad \sum_{v \in \mathcal{V}} \sum_{r \in \mathcal{R}} D_{v,r} \cdot x_{v,r}, \\ & \text{i.t.} \quad x_{v,r} \in \{0,1\}, \forall v \in \mathcal{V}, \forall r \in \mathcal{R}, \\ & \sum_{r \in \mathcal{R}} x_{v,r} = 1, \forall v \in \mathcal{V}, \\ & \sum_{v \in \mathcal{V}} A_v \cdot x_{v,r} \leq C_r, \forall r \in \mathcal{R}, \\ & \text{Exist a legal clock routing w.r.t. } x. \\ & x_{v,r} = 0, \forall (v,r) \in \{\exists e \in \mathcal{E}(v) \text{ s.t. } \kappa_{e,r} = 0\}. \end{split}$$

Cell-to-CR assignment problem

 Can be nearly optimally solved by a minimum-cost flow approximation

D-layer clock tree candidates generation

- Each D-layer clock is a vertical trunk tree
- There are m candidates for each clock on a CR grid with m columns
- Total of $m|\mathcal{E}|$ clock tree candidates

Clock tree candidate selection problem

- Minimize a topology-dependent cost
- Capacity constraints make the problem intractable
- Feasible solution may not exist

$\sum_{t\in\mathcal{T}}\phi_t\cdot z_t,$
$z_t \in \{0,1\}, \forall t \in \mathcal{T},$
$\sum_{t\in\mathcal{T}(e)}z_t=1,\forall e\in\mathcal{E},$
$\sum_{t\in\mathcal{T}}H_{t,r}\cdot z_t\leq 24, \forall r\in\mathcal{R},$
$\sum_{t\in\mathcal{T}}V_{t,r}\cdot z_t\leq 24, \forall r\in\mathcal{R}.$

Lagrangian relaxation of the candidate selection problem

- Relax the capacity constraints and introduce Lagrangian multipliers λ
- Iteratively solve the relaxed problem and update \(\lambda\) until it converges

min. " $\sum_{t \in \mathcal{T}} (\phi_t + \lambda_t) \cdot z_t,$ $z_t \in \{0, 1\}, \forall t \in \mathcal{T},$

 $\sum_{t\in\mathcal{T}(e)}z_t=1,\forall e\in\mathcal{E},$

If clock routing $\gamma^{(\kappa)}$ is feasible

- Update the best solution if cost^(κ) is better than the previous best cost*
- Fetch the next κ in the stack to explore other subspaces (branches)

Derive new constraints $\kappa' \in K'$ from κ

- Each κ' is a subspace of κ
- Want κ' ∈ K' can encourage more clock-friendly cell-to-CR assignment
- Forbid some cell-to-CR assign. that can potentially reduce clock overflow on top of κ

Remove suboptimal subspaces $\kappa' \in K'$

We can safely prune subspaces with LB costs no better than cost*

$$ext{cost}_{ ext{lb}}(\kappa) = \sum_{v \in \mathcal{V}} \min_{\{r \in \mathcal{R} \mid \kappa_{e,r} = 1, \forall e \in \mathcal{E}(v)\}} D_{v,r}.$$

 $\min_{x} \sum_{v \in \mathcal{V}} \sum_{r \in \mathcal{R}} D_{v,r} \cdot x_{v,r},$

s.t.
$$x_{\nu,r} \in \{0,1\}, \forall \nu \in \mathcal{V}, \forall r \in \mathcal{R},$$

$$\sum_{r\in\mathcal{R}}x_{v,r}=1,\forall v\in\mathcal{V},$$

$$\sum_{\nu\in\mathcal{V}}A_{\nu}\cdot x_{\nu,r}\leq C_r, \forall r\in\mathcal{R},$$

 $x_{v,r} = 0, \forall (v,r) \in \{ \exists e \in \mathcal{E}(v) \text{ s.t. } \kappa_{e,r} = 0 \}.$

Introduction

Proposed Algorithms

Experimental Results

Conclusion

Implemented in C++ on top of placement framework [Li+, TCAD'18]

Linux, Intel Core i9-7900X CPUs (3.30 GHz and 10 cores) and 128 GB RAM

Routed by Vivado v2016.4

ISPD 2017 contest benchmark

- Xilinx UltraScale architecture
- 0.5M 1.0M cells
- 32 58 clock nets

Comparison with Other State-of-the-Art Placers

Achieved the best routed WL with feasible clock routing

On average, outperforms [Li+, TODAES'18] / [Kuo+, ICCAD'17] / [Pui+, ICCAD'17] / [Li+, TCAD'18] by 4.3% / 0.5% / 2.0% / 1.4% in routed WL

Comparison with Other State-of-the-Art Placers

Achieved the best runtime

- On average, runs 2.70× / 1.64× / 2.66× faster than [Li+, TODAES'18] / [Pui+, ICCAD'17] / [Li+, TCAD'18]
- [Kuo+, ICCAD'17] did not report placement runtime

Apple-to-apple comparision with [Li+, TODAES'18] under different CC

Branch-and-Bound Tree Exploration

Ψ

- First 30 feasible solutions found in clock network planning algorithm
- The best solution among them is achieved at #27, which is 4% better than #1

Introduction

Proposed Algorithms

Experimental Results

Conclusion

- A generic FPGA placement framework that simultaneously optimizes placement quality and ensures clock feasibility by explicit clock tree construction
- The proposed framework significantly reduces the placement quality degradation while honoring the clock feasibility for designs with high clock utilization
- A branch-and-bound-inspired clock network planning algorithm and a Lagrangian relaxation-based clock tree construction technique are proposed
- The proposed approach outperforms other state-of-the-art approaches in routed wirelength with competitive runtime

Thank You!