
Simultaneous Placement and Clock Tree Construction
for Modern FPGAs

Wuxi Li 1 Mehrdad E. Dehkordi 2 Stephen Yang 2 David Z. Pan 1

1Electrical & Computer Engineering, University of Texas at Austin

2Vivado Implementation Team, Xilinx Inc.

1/29

Outline

Introduction

Proposed Algorithms

Experimental Results

Conclusion

2/29

Outline

Introduction

Proposed Algorithms

Experimental Results

Conclusion

3/29

Placement for Modern FPGAs

Input A netlist of cells (LUT, FF, DSP, RAM, . . .)

Output Cell physical locations in the FPGA layout

Objectives Wirelength, timing, power, routability, . . .

Constraints Clock network feasibility, . . .

Clock
Region

CLB DSP RAM I/O

4/29

Xilinx UltraScale Clocking Architecture

I Layout is divided into a grid of clock regions (CRs)
I Clock network consists of routing Layer (HR/VR) and distribution Layer (HD/VD)
I 24 HR/VR/HD/VD tracks in each CR
I Clock tree consists of D-layer vertical trunk tree + R-layer 2-pin route

24 VR tracks
24 VD tracks

24
H
R
tracks

24
H
D

tracks

Clock
Region

HD

VD

HR/VR

D
-layer

vertical
tru

n
k
tree

R
-l
ay
er

ro
u
te

CR has clock source
CR has clock loads
HR/VR HD/VD

5/29

Problem Statement

Simultaneous Placement and Clock Tree Construction Problem

Input A netlist of cells

Output A global placement solution
A clock routing solution

Objectives Min. wirelength

Constraints No logic resource overflow
No clock routing overflow

6/29

Previous Works

Simulated annealing-based approach
I [Lamoureux+, TRETS’08]
I Incorporating clock cost in objective
I Generic to any clocking architecture
I Slow convergence

Bounding box-based approach
I [Kuo+, ICCAD’17], [Pui+, ICCAD’17], [Li+, TODAES’18]
I Greedily shrinking clock net bounding boxes to reduce overflow
I Cheap computation and fast convergence
I Often overestimates clock routing demand

Bounding box Clock tree 7/29

Our Contribution

I Explicit clock tree construction

I Solution space of clock routing→ tree space
Clock routing→ tree space exploration process

I Inspired by branch-and-bound idea, an iterative algorithm is proposed to efficiently explore the
tree space

I A Lagrangian relaxation-based clock tree construction technique is also proposed to achieve
feasible clock routing solutions

I Experiments demonstrate the effectiveness/efficiency of our approach over previous works.

8/29

Outline

Introduction

Proposed Algorithms

Experimental Results

Conclusion

9/29

Overall Flow

Quadratic
programming

(min. wirelength)

Clock network
planning

(honor clock constr.)

CR-wise rough
legalization
(spread cells)

10/29

Overall Flow

11/29

Clock Network Planning Problem

Quadratic
programming

(min. wirelength)

Clock network
planning

(honor clock constr.)

CR-wise rough
legalization
(spread cells)

Problem Statement

Input A placement produced by
quadratic programming

Output A cell-to-CR assignment
A clock routing solution

Objectives Min. cell displacement

Constraints No logic resource overflow
No clock routing overflow

Mathematical Formulation

min
x

∑
v∈V

∑
r∈R

Dv,r · xv,r,

s.t. xv,r ∈ {0, 1}, ∀v ∈ V, ∀r ∈ R,∑
r∈R

xv,r = 1, ∀v ∈ V,

∑
v∈V

Av · xv,r ≤ Cr,∀r ∈ R,

Exist a legal clock routing w.r.t. x.

12/29

Branch-and-Bound Idea

P0

P1

P3

P2

P4

The
Unconstrained

Optimum

Problem Properties
I Integer minimization problem with

complex constraints
I Hard to solve directly
I Can be efficiently solved by

relaxing some constraints

B&B Algorithm
I Keeping solving the relaxed

problem in iteratively branching
spaces

I Tracking the lowest cost of feasible
solutions found as the upper bound
of optimum

I Pruning branches with lower bound
costs worse than this upper bound

13/29

Clock Network Planning Algorithm
(cost∗, x∗, γ∗) ← (+∞,−,−)

κ
(0)
e,r ← 1

stack.push(κ(0))

κ ← stack.fetch top()

cost(κ), x(κ) ←
cell-to-CR assign. with κ

γ(κ) ← clock routing of x(κ)

γ(κ) is feasible?

if cost(κ) < cost∗

update (cost∗, x∗, γ∗)
derive new constr.

K′ from κ

remove κ′ ∈ K′ with
LB cost ≥ cost∗

push κ′ ∈ K′

into stack

YesNo

14/29

Clock Network Planning Algorithm
(cost∗, x∗, γ∗) ← (+∞,−,−)

κ
(0)
e,r ← 1

stack.push(κ(0))

κ ← stack.fetch top()

cost(κ), x(κ) ←
cell-to-CR assign. with κ

γ(κ) ← clock routing of x(κ)

γ(κ) is feasible?

if cost(κ) < cost∗

update (cost∗, x∗, γ∗)
derive new constr.

K′ from κ

remove κ′ ∈ K′ with
LB cost ≥ cost∗

push κ′ ∈ K′

into stack

YesNo

cost∗ The best feasible cost found
x∗ The best feasible cell-to-CR assignment
γ∗ The best feasible clock routing
κe,r Binary values to represent whether cells

in clock net e can be assigned to CR r

Initialization
I Set the best solution found as NONE
I Allow any cell-to-CR assignment (κ(0))
I Initialize the stack with only κ(0)

15/29

Clock Network Planning Algorithm
(cost∗, x∗, γ∗) ← (+∞,−,−)

κ
(0)
e,r ← 1

stack.push(κ(0))

κ ← stack.fetch top()

cost(κ), x(κ) ←
cell-to-CR assign. with κ

γ(κ) ← clock routing of x(κ)

γ(κ) is feasible?

if cost(κ) < cost∗

update (cost∗, x∗, γ∗)
derive new constr.

K′ from κ

remove κ′ ∈ K′ with
LB cost ≥ cost∗

push κ′ ∈ K′

into stack

YesNo

Cell-to-CR assignment problem

I Relax the clock constraint
I Solve the clock-unconstrained version of the

original problem in subspace κ

min.
x

∑

v∈V

∑

r∈R
Dv,r · xv,r,

s.t. xv,r ∈ {0, 1}, ∀v ∈ V, ∀r ∈ R,
∑

r∈R
xv,r = 1, ∀v ∈ V,

∑

v∈V
Av · xv,r ≤ Cr, ∀r ∈ R,

((((
((((

(((
(((hhhhhhhhhhhhhh

Exist a legal clock routing w.r.t. x.

xv,r = 0,∀(v, r) ∈ {∃e ∈ E(v) s.t. κe,r = 0}.

16/29

Clock Network Planning Algorithm
(cost∗, x∗, γ∗) ← (+∞,−,−)

κ
(0)
e,r ← 1

stack.push(κ(0))

κ ← stack.fetch top()

cost(κ), x(κ) ←
cell-to-CR assign. with κ

γ(κ) ← clock routing of x(κ)

γ(κ) is feasible?

if cost(κ) < cost∗

update (cost∗, x∗, γ∗)
derive new constr.

K′ from κ

remove κ′ ∈ K′ with
LB cost ≥ cost∗

push κ′ ∈ K′

into stack

YesNo

Cell-to-CR assignment problem

I Can be nearly optimally solved by a
minimum-cost flow approximation

S

v1

v2

v|V|

T

r1

r2

r|R|

..
.

..
.

0,
A
(s
)

v
0, C (s)r

Dv,r

A
(s)
v

,

{
0, ∃e ∈ E(v) s.t. κe,r = 0

∞, otherwise

16/29

Clock Network Planning Algorithm
(cost∗, x∗, γ∗) ← (+∞,−,−)

κ
(0)
e,r ← 1

stack.push(κ(0))

κ ← stack.fetch top()

cost(κ), x(κ) ←
cell-to-CR assign. with κ

γ(κ) ← clock routing of x(κ)

γ(κ) is feasible?

if cost(κ) < cost∗

update (cost∗, x∗, γ∗)
derive new constr.

K′ from κ

remove κ′ ∈ K′ with
LB cost ≥ cost∗

push κ′ ∈ K′

into stack

YesNo

D-layer clock tree candidates generation
I Each D-layer clock is a vertical trunk tree
I There are m candidates for each clock on a

CR grid with m columns
I Total of m|E| clock tree candidates

17/29

Clock Network Planning Algorithm
(cost∗, x∗, γ∗) ← (+∞,−,−)

κ
(0)
e,r ← 1

stack.push(κ(0))

κ ← stack.fetch top()

cost(κ), x(κ) ←
cell-to-CR assign. with κ

γ(κ) ← clock routing of x(κ)

γ(κ) is feasible?

if cost(κ) < cost∗

update (cost∗, x∗, γ∗)
derive new constr.

K′ from κ

remove κ′ ∈ K′ with
LB cost ≥ cost∗

push κ′ ∈ K′

into stack

YesNo

Clock tree candidate selection problem
I Minimize a topology-dependent cost
I Capacity constraints make the problem

intractable
I Feasible solution may not exist

min.
x

∑

t∈T
φt · zt,

s.t. zt ∈ {0, 1}, ∀t ∈ T ,
∑

t∈T (e)

zt = 1,∀e ∈ E ,

∑

t∈T
Ht,r · zt ≤ 24,∀r ∈ R,

∑

t∈T
Vt,r · zt ≤ 24, ∀r ∈ R.

17/29

Clock Network Planning Algorithm
(cost∗, x∗, γ∗) ← (+∞,−,−)

κ
(0)
e,r ← 1

stack.push(κ(0))

κ ← stack.fetch top()

cost(κ), x(κ) ←
cell-to-CR assign. with κ

γ(κ) ← clock routing of x(κ)

γ(κ) is feasible?

if cost(κ) < cost∗

update (cost∗, x∗, γ∗)
derive new constr.

K′ from κ

remove κ′ ∈ K′ with
LB cost ≥ cost∗

push κ′ ∈ K′

into stack

YesNo

Lagrangian relaxation of the candidate selec-
tion problem
I Relax the capacity constraints and introduce

Lagrangian multipliers λ
I Iteratively solve the relaxed problem and

update λ until it converges

min.
x

∑

t∈T
(φt +λt) · zt,

s.t. zt ∈ {0, 1}, ∀t ∈ T ,
∑

t∈T (e)

zt = 1,∀e ∈ E ,

��
���

���
��XXXXXXXXXX

∑

t∈T
Ht,r · zt ≤ 24,∀r ∈ R,

���
���

���
�XXXXXXXXXX

∑

t∈T
Vt,r · zt ≤ 24,∀r ∈ R.

17/29

Clock Network Planning Algorithm
(cost∗, x∗, γ∗) ← (+∞,−,−)

κ
(0)
e,r ← 1

stack.push(κ(0))

κ ← stack.fetch top()

cost(κ), x(κ) ←
cell-to-CR assign. with κ

γ(κ) ← clock routing of x(κ)

γ(κ) is feasible?

if cost(κ) < cost∗

update (cost∗, x∗, γ∗)
derive new constr.

K′ from κ

remove κ′ ∈ K′ with
LB cost ≥ cost∗

push κ′ ∈ K′

into stack

YesNo

If clock routing γ(κ) is feasible
I Update the best solution if cost(κ) is better

than the previous best cost∗

I Fetch the next κ in the stack to explore other
subspaces (branches)

18/29

Clock Network Planning Algorithm
(cost∗, x∗, γ∗) ← (+∞,−,−)

κ
(0)
e,r ← 1

stack.push(κ(0))

κ ← stack.fetch top()

cost(κ), x(κ) ←
cell-to-CR assign. with κ

γ(κ) ← clock routing of x(κ)

γ(κ) is feasible?

if cost(κ) < cost∗

update (cost∗, x∗, γ∗)
derive new constr.

K′ from κ

remove κ′ ∈ K′ with
LB cost ≥ cost∗

push κ′ ∈ K′

into stack

YesNo

Derive new constraints κ′ ∈ K′ from κ

I Each κ′ is a subspace of κ
I Want κ′ ∈ K′ can encourage more

clock-friendly cell-to-CR assignment
I Forbid some cell-to-CR assign. that can

potentially reduce clock overflow on top of κ

19/29

Clock Network Planning Algorithm
(cost∗, x∗, γ∗) ← (+∞,−,−)

κ
(0)
e,r ← 1

stack.push(κ(0))

κ ← stack.fetch top()

cost(κ), x(κ) ←
cell-to-CR assign. with κ

γ(κ) ← clock routing of x(κ)

γ(κ) is feasible?

if cost(κ) < cost∗

update (cost∗, x∗, γ∗)
derive new constr.

K′ from κ

remove κ′ ∈ K′ with
LB cost ≥ cost∗

push κ′ ∈ K′

into stack

YesNo

Remove suboptimal subspaces κ′ ∈ K′

I We can safely prune subspaces with LB
costs no better than cost∗

costLB(κ) =
∑

v∈V
min

{r∈R|κe,r=1,∀e∈E(v)}
Dv,r.

min.
x

∑

v∈V

∑

r∈R
Dv,r · xv,r,

s.t. xv,r ∈ {0, 1}, ∀v ∈ V,∀r ∈ R,
∑

r∈R
xv,r = 1, ∀v ∈ V,

��
���

���
��XXXXXXXXXX

∑

v∈V
Av · xv,r ≤ Cr, ∀r ∈ R,

xv,r = 0,∀(v, r) ∈ {∃e ∈ E(v) s.t. κe,r = 0}.

20/29

Outline

Introduction

Proposed Algorithms

Experimental Results

Conclusion

21/29

Experimental Setup

Implemented in C++ on top of placement framework [Li+, TCAD’18]

Linux, Intel Core i9-7900X CPUs (3.30 GHz and 10 cores) and 128 GB RAM

Routed by Vivado v2016.4

ISPD 2017 contest benchmark
I Xilinx UltraScale architecture
I 0.5M - 1.0M cells
I 32 - 58 clock nets

22/29

Comparison with Other State-of-the-Art Placers

Achieved the best routed WL with feasible clock routing
I On average, outperforms [Li+, TODAES’18] / [Kuo+, ICCAD’17] / [Pui+, ICCAD’17] / [Li+,

TCAD’18] by 4.3% / 0.5% / 2.0% / 1.4% in routed WL

C
L
K
-F
P
G
A
01

C
L
K
-F
P
G
A
02

C
L
K
-F
P
G
A
03

C
L
K
-F
P
G
A
04

C
L
K
-F
P
G
A
05

C
L
K
-F
P
G
A
06

C
L
K
-F
P
G
A
07

C
L
K
-F
P
G
A
08

C
L
K
-F
P
G
A
09

C
L
K
-F
P
G
A
10

C
L
K
-F
P
G
A
11

C
L
K
-F
P
G
A
12

C
L
K
-F
P
G
A
13

0.95

1

1.05

N
o
rm

.
R
o
u
te
d

W
L

Li+ TODAES’18 Kuo+ ICCAD’17 Pui+ ICCAD’17

Li+ TCAD’18 Proposed

23/29

Comparison with Other State-of-the-Art Placers

Achieved the best runtime
I On average, runs 2.70× / 1.64× / 2.66× faster than [Li+, TODAES’18] / [Pui+, ICCAD’17] / [Li+,

TCAD’18]
I [Kuo+, ICCAD’17] did not report placement runtime

C
L
K
-F
P
G
A
01

C
L
K
-F
P
G
A
02

C
L
K
-F
P
G
A
03

C
L
K
-F
P
G
A
04

C
L
K
-F
P
G
A
05

C
L
K
-F
P
G
A
06

C
L
K
-F
P
G
A
07

C
L
K
-F
P
G
A
08

C
L
K
-F
P
G
A
09

C
L
K
-F
P
G
A
10

C
L
K
-F
P
G
A
11

C
L
K
-F
P
G
A
12

C
L
K
-F
P
G
A
13

1

2

3

N
o
rm

.
R
o
u
te
d

W
L

Li+ TODAES’18 Pui+ ICCAD’17 Li+ TCAD’18 Proposed

24/29

Comparison Under Different Clock Capacities (CC)

Apple-to-apple comparision with [Li+, TODAES’18] under different CC

24 12 8 7 6 5
1

1.1

1.2

1.3

Clock Capacity

N
o
rm

.
R
o
u
te
d

W
L

Li+ TODAES’18 Proposed

24 12 8 7 6 5

3

6

9

12

15

Clock Capacity

#
S
u
c
c
e
ss
e
s

Li+ TODAES’18 Proposed

24 12 8 7 6 5
1

1.2

1.4

1.6

1.8

2

2.2

Clock Capacity

N
o
rm

.
R
u
n
ti
m
e

Li+ TODAES’18 Proposed

25/29

Branch-and-Bound Tree Exploration

I First 30 feasible solutions found in clock network planning algorithm
I The best solution among them is achieved at #27, which is 4% better than #1

0 5 10 15 20 25 30
2

2.2

2.4

2.6

2.8

3
·106

Legal Solution Number

C
os
t

Lower-Bound Cost

Actual Cost

26/29

Outline

Introduction

Proposed Algorithms

Experimental Results

Conclusion

27/29

Conclusion

I A generic FPGA placement framework that simultaneously optimizes placement quality and
ensures clock feasibility by explicit clock tree construction

I The proposed framework significantly reduces the placement quality degradation while
honoring the clock feasibility for designs with high clock utilization

I A branch-and-bound-inspired clock network planning algorithm and a Lagrangian
relaxation-based clock tree construction technique are proposed

I The proposed approach outperforms other state-of-the-art approaches in routed wirelength with
competitive runtime

28/29

Thank You!

29/29

	Main Talk
	Introduction
	Proposed Algorithms
	Experimental Results
	Conclusion

	anm0:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

