On-chip FPGA Debug Instrumentation for Machine Learning Applications

Daniel Holanda Noronha¹, Ruizhe Zhao², Jeff Goeders³, Wayne Luk² and Steven J.E. Wilton¹ ¹University of British Columbia, ²Imperial College London, ³Brigham Young University danielhn@ece.ubc.ca, ruizhe.zhao15@imperial.ac.uk, jgoeders@byu.edu, w.luk@imperial.ac.uk, stevew@ece.ubc.ca

FPGA 2019 – Monterey, California

THE UNIVERSITY OF BRITISH COLUMBIA

BYU BRIGHAM YOUNG

Previous Work

On-chip debug

- Records the behaviour of the design as it runs at speed for later interrogation
- Is necessary:
 - Simulation is usually too slow
 - Environment can often not be adequately described
- Challenge:
 - Record enough information on-chip to understand the problem

Our approach

A flow to accelerate the debug of machine learning applications on FPGAs

- Previous work is not ideal for debugging ML circuits
 - Even longer run-times; "Correctness" hard to determine; Commonly designed at a high level.
- This work uses domain-specific characteristics of ML circuits to:
 - Maximize the utilization of trace buffer space
 - Provide information that is meaningful to an engineer

Our approach

A flow to accelerate the debug of machine learning applications on FPGAs

- Previous work is not ideal for debugging ML circuits
 - Even longer run-times; "Correctness" hard to determine; Commonly designed at a high level.
- This work uses domain-specific characteristics of ML circuits to:
 - Maximize the utilization of trace buffer space
 - Provide information that is meaningful to an engineer

Debug Instruments

Overview of our instruments

- Many machine learning applications consist of large arrays (eg. activations or weights)
- Instruments track large arrays over time

Distribution Instrument

- Creates a history of the distribution of the matrix we are observing over time (over multiple frames)
- In a CNN, a frame may represent all calculations corresponding to a single input image

Debug Instruments

Spatial Sparsity Instrument

- Stores an indication whether each element of the array is zero or non-zero.
- The same logic could also be used to track elements close to 1, another upper bound or NaN.

Summary Statistics Instrument

• Tracks only one kind of statistic (sparsity, mean, std. dev) per frame.

User Interface

Main Differences

- Stepping through frames instead of stepping through clock cycles (hardware-oriented debug) or lines of C code (HLS-debug)
- No access to raw values, we can trace the circuit for a longer period

Results

Configuration	Kernel	FMax	LEs	# Traced
		(MHz)		Frames
	32x28x28	213.79	3391	0.124
Previous work	8x28x28	260.05	3324	0.498
	1x28x28	287.89	3167	3.985
	32x28x28	200.48	2867	195
Distribution Instrument - 32 bins	8x28x28	227.65	2834	223
	1x28x28	229.87	2676	284
	32x28x28	189.62	3670	48
Distribution Instrument - 128 bins	8x28x28	225.17	3600	55
	1x28x28	228.98	3488	71
	32x28x28	200.46	2547	3
Spatial Sparsity Instrument	8x28x28	211.13	2531	15
	1x28x28	214.70	2393	127
	32x28x28	213.17	2557	6666
Summary Statistics Instrument - Sparsity	8x28x28	258.75	2531	7692
	1x28x28	285.30	2390	10000
	32x28x28	189.23	2930	3
Proposed instruments combined	8x28x28	206.69	2927	14
	1x28x28	220.51	2786	87

Results

Configuration	Kernel	FMax	LEs	# Traced
		(MHz)		Frames
	32x28x28	213.79	3391	0.124
Previous work	8x28x28	260.05	3324	0.498
	1x28x28	287.89	3167	3.985
	32x28x28	200.48	2867	195
Distribution Instrument - 32 bins	8x28x28	227.65	2834	223
	1x28x28	229.87	2676	284
	32x28x28	189.62	3670	48
Distribution Instrument - 128 bins	8x28x28	225.17	3600	55
	1x28x28	228.98	3488	71
	32x28x28	200.46	2547	3
Spatial Sparsity Instrument	8x28x28	211.13	2531	15
	1x28x28	214.70	2393	127
	32x28x28	213.17	2557	6666
Summary Statistics Instrument - Sparsity	8x28x28	258.75	2531	7692
	1x28x28	285.30	2390	10000
	32x28x28	189.23	2930	3
Proposed instruments combined	8x28x28	206.69	2927	14
	1x28x28	220.51	2786	87

Takeaway:

Domain-specific instrumentation allow us to store more useful information on-chip

9