
Optimizing Quantized
Neural Networks on FPGAs

Presented by:
Robert Green – Design Engineer

Copyright ASIC Design Services 2018

Core Deep Learning
an embedded FPGA solution

Outline

• Brief introduction to deep learning
• Convolutional neural networks on FPGAs
• Addressing the computation problem
• Addressing the memory problem
• Core Deep Learning framework
• Demo

Copyright ASIC Design Services 2018

Deep Learning Introduction

• Deep Learning Setup
• Deep Learning Overview
• Convolutional Neural Networks
• Applications

Copyright ASIC Design Services 2018

Deep Learning IntroductionDeep Learning Setup

Training data

Training algorithm

Model Prediction

Evaluate

Copyright ASIC Design Services 2018

Deep Learning IntroductionDeep Learning Setup

Training data

Training algorithm

Model Prediction

Evaluate

Copyright ASIC Design Services 2018

Deep Learning IntroductionDeep Learning Setup

Trained Model PredictionInput data

Copyright ASIC Design Services 2018

Evaluate Deep Learning Introduction

Copyright ASIC Design Services 2018

Deep Learning
Overview

Pedestrian

Car

Animal

Road

OutputInput

Hand-Crafted
SIFT, HOG, Gabor

Filters etc.

Traditional Image Processing Pipeline

Trainable

Feature Extractor Classifier

Pedestrian

Car

Animal

Road

OutputInput

Trainable
Convolutional

Layers with
optional pooling
and activation

functions

Deep Learning

Trainable

Feature Extractor Classifier

• Traditionally hand-crafted features
• Time consuming design
• Application Specific

• Deep Learning
• Feature Learning
• Trainable Feature Extractor
• Requires lots of training data

• Became viable with improvement
in
• Improved Training Techniques
• Availability of Training Data
• Improved processing power

• Trainable Classifier generally used

Deep Learning Introduction

Copyright ASIC Design Services 2018

Convolutional Neural
Network

Input Feature Extractor Classifier Output

Convolution
Layer

Convolution
Layer

Convolution
Layer

Fully
Connected

Layer

Fully
Connected

Layer

Fully
Connected

Layer

Layer Input Convolution Output Subsampled Outputs

Multichannel
Convolution

Subsampling
(Pooling)

W10
W11
W12
W13
W14
W15

W16

Deep Learning Introduction

Copyright ASIC Design Services 2018

CORE AI
a deep learning FPGA framework

Feature Extractor

Multichannel
Convolution

Subsampling

Input

Non-Linear
Activation
Function

Feature Maps

Output of Preceding Layer is
used as input

Output is used as input to the
following layer

Activation function applied
independently to each

element

Pooling

Copyright ASIC Design Services 2018

Applications

• Applications:
• Consumer
• Defence
• Industrial
• Medical
• Surveillance

Pose Estimation
Cao et al, 2017

Target Detection and Classification in SAR
Chen et al. 2016

Deep Learning Introduction

Crowd Segmentation
Kang and Wang, 2014

Depth from Monocular Images
Lui et al, 2015

Copyright ASIC Design Services 2018

Deep Learning Flow
Summary

Training Stage

CNN

Large
Datasets

Optimization
Algorithm

• Platform: Local GPUs or GPUs in the cloud
• Has required parallel processing power and

memory for efficient training

Inference Stage

• Actual use of CNN in the field (deployment)

• Can continue to use CPUs or GPUs here
• CPU - Inefficient and slow with CNNs
• GPU – Large initial power budget, still

general purpose, large space footprint,
require control CPU

• We suggest FPGAs – low power, small, network
specific optimised solution

Input
Sample

Trained CNN Output
Machine
learning
expert

Deep Learning Introduction

Copyright ASIC Design Services 2018

Convolutional Neural Networks on FPGAs

• Why FPGAs
• Applications
• Complexity analysis
• Challenges

Copyright ASIC Design Services 2018

Why FPGAs

Deep Learning

• Total solution size/footprint
• Flexibility
• Low-power
• Deep Learning algorithms running

alongside other SOFT IP cores
• Security

Convolutional Neural Networks on FPGAs

Copyright ASIC Design Services 2018

Applications

Moving the processing to the node

Convolutional Neural Networks on FPGAs

Solutions can be packaged into battery-operated
consumer products

Copyright ASIC Design Services 2018

Complexity analysis Convolutional Neural Networks on FPGAs

You Only Look Once:
Redmon et al, 2016

Convolution layers Fully connected layers

Copyright ASIC Design Services 2018

𝐶𝑜𝑛𝑣𝑡𝑖𝑚𝑒 = 𝑂(𝑁 ×𝑀 × 𝐾2 × 𝑅 × 𝐶)

𝑃𝑜𝑜𝑙𝑡𝑖𝑚𝑒 = 𝑂(𝑁 × 𝑅 × 𝐶)

𝐶𝑜𝑛𝑣𝑠𝑝𝑎𝑐𝑒 = 𝑂(𝑁 ×𝑀 × 𝐾2)

Convolutional Neural Networks on FPGAs

R

C

M

N

S*C+K-S

K

K
S*

R
+K

-S

Weight set 1

Weight set 2

Weight set 3
Weight set 1 Weight set 2 Weight set 3

Input feature maps Output feature maps

Complexity analysis

Copyright ASIC Design Services 2018

Convolutional Neural Networks on FPGAs

𝐹𝐶𝑡𝑖𝑚𝑒 = 𝑂(𝑁 ×𝑀)

𝐹𝐶𝑠𝑝𝑎𝑐𝑒 = 𝑂(𝑁 ×𝑀)

W10

W11

W12

W13

W14

W15

W16

N M

x

+

W10

x

W12

x

W13

B

Complexity analysis

Copyright ASIC Design Services 2018

Complexity analysis Convolutional Neural Networks on FPGAs

You Only Look Once:
Redmon et al, 2016

Convolution layers Fully connected layers

Copyright ASIC Design Services 2018

Complexity analysis Convolutional Neural Networks on FPGAs

1.040

5.549

3.699 3.699

1.850

0.029 0.006
0.000

1.000

2.000

3.000

4.000

5.000

6.000

1 2 3 4 5 6 7

La
ye

r
o

p
e

ra
ti

o
n

s
(G

O
P

)

Layer time complexity

0.005 0.442 1.180

4.719

9.437

29.360

6.021

0.000

5.000

10.000

15.000

20.000

25.000

30.000

35.000

1 2 3 4 5 6 7

W
ei

gh
ts

 r
eq

u
ir

ed
 (

M
ill

io
n

)

Layer space complexity

Convolution layers Fully connected layers Convolution layers Fully connected layers
Copyright ASIC Design Services 2018

Challenges Convolutional Neural Networks on FPGAs

Convolutional Neural Network Challenges
• Computational-intensive
• Frequent memory access
• Difficult to deploy on custom hardware platforms

FPGA limitations
• BRAM
• DSP resources
• Logic elements
• External memory bandwidth

Copyright ASIC Design Services 2018

Addressing the Computation and Memory
Problem

• Sources of parallelism
• Tiling
• Loop optimizations
• Optimal math block configurations
• Quantization
• Double buffering

Copyright ASIC Design Services 2018

Addressing the Computation and
Memory Problem

Sources of
Parallelism

Kernel level parallelism

R

C

M

N

S*C+K-S

K

K

S*
R

+K
-S

Weight set 1

Weight set 2

Weight set 3
Weight set 1 Weight set 2 Weight set 3

Input feature maps Output feature maps

Copyright ASIC Design Services 2018

Addressing the Computation and
Memory Problem

Sources of
Parallelism

Input feature map parallelism

R

C

M

N

S*C+K-S

K

K

S*
R

+K
-S

Weight set 1

Weight set 2

Weight set 3
Weight set 1 Weight set 2 Weight set 3

Input feature maps Output feature maps

Copyright ASIC Design Services 2018

Addressing the Computation and
Memory Problem

Sources of
Parallelism

Output feature map parallelism

R

C

M

N

S*C+K-S

K

K

S*
R

+K
-S

Weight set 1

Weight set 2

Weight set 3
Weight set 1 Weight set 2 Weight set 3

Input feature maps Output feature maps

Copyright ASIC Design Services 2018

Tiling Addressing the Computation and
Memory Problem

for (row=0; row<R; row++) {
for (col=0, col<C; col++){

for (to=0; to<M; to++){
for (ti=0; ti<N; ti++){

for (i=0; i<K; i++){
for (j=0; j<K; j++){

output_fm[to][row][col] += weights[to][ti][i][j]*input_fm[ti][S*row+i] [S*col+j]
}}}}}}

R

C

M

N

S*C+K-S

K

K
S*

R
+K

-S

Weight set 1

Weight set 2

Weight set 3
Weight set 1 Weight set 2 Weight set 3

Input feature maps Output feature maps

Copyright ASIC Design Services 2018

Tiling Addressing the Computation and
Memory Problem

for (row=0; row<R; row+=Tr) {
for (col=0, col<C; col+=Tc){

for (to=0; to<M; to+=Tm){
for (ti=0; ti<N; ti+=Tn){

//Load Output feature maps
//Load weights
//Load input feature maps

for (trr=row; trr<min(row+Tr,R); trr++){
for (tcc=col; tcc<min(col+Tc,C); tcc++){

for (too=to; too<min(to+Tm,M); too++){
for (tii=ti; tii<min(ti+Tn,N); tii++){

for (i=0; i<K; i++){
for (j=0; j<K; j++){

output_fm[too][trr][tcc] += weights[too][tii][i][j]*input_fm[tii][S*trr+i] [S*tcc+j]
}}}}}}

//Store Output feature maps
}}}}

External data transfer

External data transfer

On chip data computation

Layer Input Convolution Output

T_c

T_r

T_m
T_n

Copyright ASIC Design Services 2018

Loop Pipelining and
Unrolling

Addressing the Computation and
Memory Problem

for (row=0; row<R; row+=Tr) {
for (col=0, col<C; col+=Tc){

for (to=0; to<M; to+=Tm){
for (ti=0; ti<N; ti+=Tn){

//Load Output feature maps
//Load weights
//Load input feature maps

for (i=0; i<K; i++){{
for (j=0; j<K; j++){{

for (trr=row; trr<min(row+Tr,R); trr++){
for (tcc=col; tcc<min(col+Tc,C); tcc++){

for (too=to; too<min(to+Tm,M); too++){
for (tii=ti; tii<min(ti+Tn,N); tii++){

output_fm[too][trr][tcc] += weights[too][tii][i][j]*input_fm[tii][S*trr+i] [S*tcc+j]
}}}}}}

//Store Output feature maps
}}}}

External data transfer

On chip data computation

Loop pipelining

Loop unrolling

Loop unrolling

External data transfer

Copyright ASIC Design Services 2018

Computing Engine Addressing the Computation and
Memory Problem

x

x
+

x

x
+

x

x
+

x

x
+

+

+

+

Adder TreeMAC

Processing Element

PE

PE

PE

PE

Computing Engine

Weights

Bias

Data

Copyright ASIC Design Services 2018

DOT Product Mode

• Convolution implemented as a large
number of multiply-accumulate
operations

• Microsemi Math blocks can implement
a DOTP mode

• Two multiply operations and an
addition operation in a single clock
cycle

Addressing the Computation and
Memory Problem

P= 𝐵 8: 0 × 𝐴 17: 9 + (𝐵 17: 9 × 𝐴 8: 0)

Copyright ASIC Design Services 2018

Microsemi PolarFire MACC block

Cascading MACC
units

Addressing the Computation and
Memory Problem

P= 𝐵 8: 0 × 𝐴 17: 9 + (𝐵 17: 9 × 𝐴 8: 0) + C

Copyright ASIC Design Services 2018

Microsemi PolarFire MACC block

Microsemi PolarFire MACC block

Quantization

..0 0 1 1 0 0 1 0 0 0 0 1 1 0 0

Data quantisation

• High-precision multiply-accumulate
• Use dynamic fixed point per layer

• Significant bits selected through
analysis of network using
representative test set

• High-precision source networks
• Networks are retrained for lower

precision to regain close to original
performance

Addressing the Computation and
Memory Problem

Copyright ASIC Design Services 2018

Quantization

Network Floating-point 8-bit

CaffeNet 77.12 76.64

VGG16 88.10 87.60

GoogLeNet 88.82 88.64

SqueezeNet 79.72 79.16

Top5 Accuracy in ImageNet (Guo et al, 2016)

Network Floating-point 8-bit

LeNet 99.1 99.1

CIFAR-10 81.7 81.4

CaffeNet 56.9 56.0

Accuracy on a variety of datasets (Gysel, 2016)

Accuracy on a variety of networks/applications (own work)

Network Floating-point 8-bit

LeNet 99.12 99.13

Scene Labelling 73.89 73.31

VGG16 88.44 87.54

Addressing the Computation and
Memory Problem

Copyright ASIC Design Services 2018

Addressing the Computation and
Memory Problem

for (row=0; row<R; row+=Tr) {
for (col=0, col<C; col+=Tc){

for (to=0; to<M; to+=Tm){
for (ti=0; ti<N; ti+=Tn){

//Load Output feature maps
//Load weights
//Load input feature maps

for (i=0; i<K; i++){{
for (j=0; j<K; j++){{

for (trr=row; trr<min(row+Tr,R); trr++){
for (tcc=col; tcc<min(col+Tc,C); tcc++){

for (too=to; too<min(to+Tm,M); too++){
for (tii=ti; tii<min(ti+Tn,N); tii++){

output_fm[too][trr][tcc] += weights[too][tii][i][j]*input_fm[tii][S*trr+i] [S*tcc+j]
}}}}}}

//Store Output feature maps
}}}}

External data transfer

On chip data computation

Loop pipelining

Loop unrolling

Loop unrolling

External data transfer

Local Memory
Promotion

Copyright ASIC Design Services 2018

Local Memory
Promotion

Addressing the Computation and
Memory Problem

for (row=0; row<R; row+=Tr) {
for (col=0, col<C; col+=Tc){

for (to=0; to<M; to+=Tm){
for (ti=0; ti<N; ti+=Tn){

//Load Output feature maps
//Load weights
//Load input feature maps

for (i=0; i<K; i++){{
for (j=0; j<K; j++){{

for (trr=row; trr<min(row+Tr,R); trr++){
for (tcc=col; tcc<min(col+Tc,C); tcc++){

for (too=to; too<min(to+Tm,M); too++){
for (tii=ti; tii<min(ti+Tn,N); tii++){

output_fm[too][trr][tcc] += weights[too][tii][i][j]*input_fm[tii][S*trr+i] [S*tcc+j]
}}}}}}

}
//Store Output feature maps

}}}

External data transfer

External data transfer

On chip data computation

Local memory promotion

Loop pipelining

Loop unrolling

Loop unrolling

Copyright ASIC Design Services 2018

Double buffering Addressing the Computation and
Memory Problem

Ping-pong operation

Compute Input buff 0 Output buff 0 Input buff 1 Output buff 0 Input buff 0 Output buff 1 Input buff 1 Output buff 1
Load Input buff 1 Input buff 0 Input buff 1 Input buff 0
Store Output buff 1 Output buff 0

Copyright ASIC Design Services 2018

Buffer Ports Addressing the Computation and
Memory Problem

Input Buffer

Data
Buffers

Weight
Buffers

Bias
Buffers

…. …. ….

Output Buffer

Data
Buffers

….

Copyright ASIC Design Services 2018

Design Space Exploration

• Roofline model
• Design search

Copyright ASIC Design Services 2018

Design Space ExplorationRoofline Model

• Implementation can either be
computation-bounded or memory-
bounded

• Model performance to off-chip memory
traffic

A
tt

ai
n

ab
le

 p
e

rf
o

rm
an

ce
 (

G
O

P
S)

Computation to communication ratio (OP/Byte access)

Computational roof (GOPS)

Algorithm 2

Algorithm 1

𝐴𝑡𝑡 𝑃𝑒𝑟𝑓 = 𝑚𝑖𝑛 ቊ
𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑟𝑜𝑜𝑓
𝐶𝑇𝐶 𝑟𝑎𝑡𝑖𝑜𝑛 × 𝐵𝑊

Copyright ASIC Design Services 2018

Design Space ExplorationDesign search

0

20

40

60

80

100

120

0 5 10 15 20 25 30 35 40 45

A
tt

ai
n

ab
le

 p
e

rf
o

rm
an

ce
 (

G
O

P
S)

Computation to communication ratio (OP/Byte access)

𝐶𝑜𝑚𝑝 𝑟𝑜𝑜𝑓 =
𝑜𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑜𝑓 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑐𝑦𝑐𝑙𝑒𝑠

𝐶𝑇𝐶 =
𝑜𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑜𝑓 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑑𝑎𝑡𝑎 𝑎𝑐𝑐𝑒𝑠𝑠

Optimal platform design parameters

Copyright ASIC Design Services 2018

Core Deep Learning

Copyright ASIC Design Services 2018

Features

Core generator features

• Full pipeline from convolutional neural network description to FPGA implementation
• We only need the target platform or resource availability and the network architecture

• Network retraining for memory footprint minimisation
• Support for different network layers

• Convolutional layer
• Fully connected layer
• Pooling layer
• Activation layers

• Convolutional layers can implement filters of any size and stride
• Pooling layers supporting arbitrary kernel size
• Support for padding
• AXI memory interface for external RAM

Core Deep Learning
an embedded FPGA solution

Copyright ASIC Design Services 2018

Core Interface Core Deep Learning
an embedded FPGA solution

AXI Interface
C

o
n

tr
o

lle
rs

Input
Buffers

Output
Buffers

Control IP
External
Memory

FP
G

A

APB Interface

Computing Engine

PE …..PE PE

M
ic

ro
co

d
e

Copyright ASIC Design Services 2018

A scalable solution

User specified

• Platform (M2S090, MPF300T …)
• Platform resources available for deep learning solution

• MACC units
• LSRAM memory blocks
• uSRAM memory blocks

• Available memory bandwidth

Core Deep Learning
an embedded FPGA solution

Copyright ASIC Design Services 2018

Framework flow

Network
description

Quantization
Design space
exploration

SystemVerilog

Core Deep Learning
an embedded FPGA solution

Copyright ASIC Design Services 2018

Demos Core Deep Learning
an embedded FPGA solution

Copyright ASIC Design Services 2018

Tiny-YOLOv2

Coordinates Class Probabilities

Object Probability

• Fully Convolutional Neural Network - 9 Convolutional Layers
• convolution operation + batch normalisation + activation + pooling

• Trained end-to-end on Pascal VOC dataset
• Quantized and finetuned from provided base network by Joseph Redmon

• Tiny YOLO @ https://pjreddie.com/darknet/yolo/
• 5 fps on Microsemi M2S090

Multiple predictions per grid location

Core Deep Learning
an embedded FPGA solution

Copyright ASIC Design Services 2018

Tiny-YOLOv2

Input image shape 416 x 416

Number of convolutional layers 9

Number of fully connected layers 0

GOPs (MULACC) 7

GOPs/s 7.782

Runtime (ms) 1028

Runtime (ms) 216

Performance [GOPs/s] 32

Efficiency [GOPs/s/W] 18.82

Multiplier Efficiency [GOPs/s/Slice*] 0.381

*Slice – DSP Slice/Math Block

Core Deep Learning
an embedded FPGA solution

Copyright ASIC Design Services 2018

Tiny-YOLOv2

4LUT 41131 48%

DFF 48310 56%

RAM64x18 72 64%

RAM1K18 72 66%

MACC 74 88%

Core Deep Learning
an embedded FPGA solution

Copyright ASIC Design Services 2018

Tiny-YOLOv2 on
Microsemi PolarFire

Input image shape 416 x 416

Number of convolutional layers 9

Number of fully connected layers 0

GOPs (MULACC) 7

GOPs/s 7.782

Runtime (ms) 1028

Runtime (ms) 28

Performance [GOPs/s] 245

Efficiency [GOPs/s/W] 74.24

Multiplier Efficiency [GOPs/s/Slice*] 0.339

*Slice – DSP Slice/Math Block

Core Deep Learning
an embedded FPGA solution

Copyright ASIC Design Services 2018

Tiny-YOLOv2 on
Microsemi PolarFire

4LUT 70039 23%

DFF 98703 33%

uSRAM (64x12) 1440 52%

LSRAM (20 k bit) 602 63%

MACC 723 78%

Core Deep Learning
an embedded FPGA solution

Copyright ASIC Design Services 2018

Questions Core Deep Learning
an embedded FPGA solution

Copyright ASIC Design Services 2018

