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Outline Core Deep Learning

Design Services an embedded FPGA solution

* Brief introduction to deep learning

e Convolutional neural networks on FPGAs
* Addressing the computation problem

* Addressing the memory problem

* Core Deep Learning framework

* Demo
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Design Services Deep Learning Introduction

Deep Learning Setup

Deep Learning Overview
Convolutional Neural Networks
Applications
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Training data

Training algorithm
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Deep Learning Setup Deep Learning Introduction

Design Services

v

Input data Trained Model Prediction
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Evaluate Deep Learning Introduction
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S C Deep Learning
Deep Learning Introduction

Overview
Traditionally hand-crafted features
* Time consuming design

Design Services

Traditional Image Processing Pipeline
_ﬁmlnpm o Output * Application Specific
%i o e ﬁ‘/~ ' Pedestrian_
T =% * Deep Learning
* Feature Learning
* Trainable Feature Extractor

Requires lots of training data

F * 4 °
Feature Extractor Classifier
* Became viable with improvement
in
* Improved Training Techniques

Deep Learning
Output
Availability of Training Data

Input
§: 1 e ﬁ/“ © Pedestrian [N y
| e Car ] * Improved processing power
Animal [
Road [ * Trainable Classifier generally used

Feature Extractor Classifier
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S C Convolutional Neural

Deep Learning Introduction

Design Services Network

Input > Output

Layer Input Convolution Output ~ Subsampled Outputs

|

Subsampling
(Pooling)

|

Multichannel

. _ Convolution
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. . Feature Extractor FOREA
Design Services a deep learning FPGA framework

N (-

Feature Maps

T

Multichannel Non-Linear Subsampling
Convolution Activation
Function
. . . Pooling . .
Output of Preceding Layer is Activation function applied Output is used as input to the
used as input independently to each following layer
element
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Design Services Applications Deep Learning Introduction

* Applications:
* Consumer

e Defence
* |ndustrial
e Medical

e Surveillance

Pose Estimation
Cao et al, 2017

TY1:
Target Detection and Classification in SAR
Chen et al. 2016

Depth from Monocular Images

Crowd Segmentation Lui et al, 2015

Kang and Wang, 2014

y
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Deep Learning Flow
Summary

Training Stage

Platform: Local GPUs or GPUs in the cloud
* Has required parallel processing power and
memory for efficient training

Deep Learning Introduction

ﬂference Stage \

* Actual use of CNN in the field (deployment)

e (Can continue to use CPUs or GPUs here
e CPU - Inefficient and slow with CNNs
* GPU - Large initial power budget, still
general purpose, large space footprint,
require control CPU

* We suggest FPGAs — low power, small, network
specific optimised solution
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Design Services Convolutional Neural Networks on FPGAs

& Microsemi
® Why FPGAS Power Matters."
* Applications
* Complexity analysis POLARFIRE

FPGA

* Challenges
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PolarFire System
Controller

SPI Auto
Programming

Physically
Unclonable
Function (PUF)

Secure
eNVM

Tamper Detectors &
Countermeasures

Vip (1.0Vor1.05V)
Vipss 2.5V
Voois 1.8V

Suspend

System

Services
—_—

Flags/
Response

Microsemi® PolarFire™ FPGA

Up to 24 Lanes Multi-Protocol Low Power 250 Mbps-12.7 Gbps Transceiver Lane

PCI Express
Gen2
(EP/RP) DMA,
x1, x2, x4

4 to 24 Transceiver Lanes

64B/6XB 8B/10B

PCI Express
Gen2

DFE (EP/RP) DMA,

x1, x2, x4

Eye
Monitor

10GBASE-KR SDI
AXI, DMA, DDRx LPDDRx QDR I+
Controller Controller Controller TSEMAGC

SEU Immune Configuration Cell FPGA Fabric up to 481K Logic Elements

18 x 18 MACC,

Pre Adder

!

USRAM
(64 x 12)

High-Speed I/O (HSIO) 1.8 V-1.2V

I/O Gearing

DDR4, 3L,
LPDDR2/3,
QDRI+

LSRAM User PLLs & DLLs

(1024 x 20)
SECDED UPROM

!

General Purpose 1/0 (GPIO) 3.3 V-1.2V

DDR2/3,

I/O Gearing SGMII LPDDR,
QDRI+

Crypto
Co-Processor

DPA Safe

True Random
Number
Generator

Available on Data
Security Devices

Deep Learning
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Design Services Appllcatlons Convolutional Neural Networks on FPGAs

Moving the processing to the node

& Microsemi

Power Matters.”

POLARFIRE"
FPGA

Solutions can be packaged into battery-operated

consumer products
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Redmon et al, 2016
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Design Services

Complexity analysis Convolutional Neural Networks on FPGAs

Weight set 1 Weight set 2 Weight set 3

Weight set 1

Input feature maps Output feature maps
Conveyme = O(N XM X K? X R X C)

Poolijme = O(N X R X C)

— 2
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Design Services Complexity analy5|s Convolutional Neural Networks on FPGAs

Vi

ALT

16

FCyime = O(N X M)

FCspace = O(N X M)
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Design Services Complexity analysis Convolutional Neural Networks on FPGAs

Layer time complexity Layer space complexity
6.000 5 549 35.000
= 29.360

—_ C
= 5000 § 30.000
@) =
O S 25.000
5 4.000 3.699  3.699 =
(@ ©
o @ 20.000
5 3.000 ‘5
o S 15.000
S 5 000 1.850 =

. » 9.437
= +£10.000
> 1.040 ) 2019 6.021
5 1.000 %’ 5.000 :

044> 1.180
0.029  0.006 0.005 O
0.000 — 0.000 — S
1 2 3 4 5 6 7 1 2 3 4 5 6 7
Convolution layers Fully connected layers Convolution layers  Fully connected layers
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Design Services Challenges Convolutional Neural Networks on FPGAs

Convolutional Neural Network Challenges
* Computational-intensive
* Frequent memory access
e Difficult to deploy on custom hardware platforms

FPGA limitations
« BRAM
* DSP resources
* Logic elements
* External memory bandwidth
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Design Services Problem

* Sources of parallelism

* Tiling

* Loop optimizations

e Optimal math block configurations
* Quantization

* Double buffering
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S C Sources of Addressing the Computation and
Design Services Parallelism Memory Problem

Kernel level parallelism

Weight set 1 Weight set 2 Weight set 3

i

S*R+K-S

Weight set 1

Input feature maps Output feature maps
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S C Sources of Addressing the Computation and
Design Services Parallelism Memory Problem

Input feature map parallelism

Weight set 1 Weight set 2 Weight set 3

i

S*R+K-S

Weight set 1

Input feature maps Output feature maps
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S C Sources of Addressing the Computation and
Design Services Parallelism Memory Problem

Output feature map parallelism

Weight set 1 Weight set 2 Weight set 3

i

S*R+K-S

Weight set 1

Input feature maps Output feature maps
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S l C Addressing the Computation and

Design Services Memory Problem

Weight set 1 Weight set 2 Weight set 3

Weight set 1

for (row=0; row<R; row++) {
for (col=0, col<C; col++){ Input feature maps Output feature maps
for (to=0; to<M; to++){
for (ti=0; ti<N; ti++){
for (i=0; i<K; i++){
for (j=0; j<K; j++){
output_fmlto][row][col] += weights[to][ti][i][j]*input_fm[ti][S*row+i] [S*col+j]
1
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S C Addressing the Computation and

Design Services Memory Problem

4  for (row=0; row<R; row+=Tr) { Layer Input Convolution Output
for (col=0, col<C; col+=Tc){ T n
for (to=0; to<M; to+=Tm){
for (ti=0; ti<N; ti+=Tn){ _—
//Load Output feature maps
//Load weights
//Load input feature maps

External data transfer

for (trr=row; trr<min(row+Tr,R); trr++){
for (tcc=col; tcccmin(col+Tc,C); tcc++){
for (too=to; too<min(to+Tm,M); too++){
On chip data computation for (tii=ti; tiickmin(ti+Tn,N); tii++){
for (i=0; i<K; i++){
for (j=0; j<K; j++){
output_fm[too][trr][tcc] += weights[too][tii][i][j]*input_fm[tii][S*trr+i] [S*tcc+]]
v i

External data transfer I //Store Output feature maps

i
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' S C Loop Plpellnlng and Addressing the Computation and
Design Services Unrolling Memory Problem

A for (row=0; row<R; row+=Tr) {
for (col=0, col<C; col+=Tc){
for (to=0; to<M; to+=Tm){

External data transfer for (ti=0; ti<N; ti+=Tn){
//Load Output feature maps
//Load weights -
! //Load input feature maps Loop pipelining
1 for (i=0; i<K; i++){{ Loop unrolling

for (j=0; j<K; j++){{
for (trr=row; trr<min(row+Tr,R); trr++){
_ . for (tcc=col; tcc<min(col+Tc,C); tcc++){ _
On chip data computation D N N too:V Loop unrolling
for (tii=ti; tiikmin(ti+Tn,N); tii++){
output_fml[too][trr][tcc] += weights[too][tii][i][j]*input_fm[tii][S*trr+i] [S*tcc+)]
Il 13338,

External data transfer I //Store Output feature maps
H
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Addressing the Computation and

mputing Engin
Co pUt 5 sihe Memory Problem

Design Services

Processing Element Computing Engine

Weights >

Data —>

Bias —>

LYY

MAC Adder Tree
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S C Addressing the Computation and

: . uantization
Design Services Q Memory Problem

Data quantisation

* High-precision multiply-accumulate
* Use dynamic fixed point per layer

. Slgnlflc.:ant bits selectele through 0 ........ o o .11 0 0
analysis of network using
representative test set

* High-precision source networks

* Networks are retrained for lower

precision to regain close to original
performance
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. . Addressing the Computation and
- - uantization
Design Services Q Memory Problem

Accuracy on a variety of datasets (Gysel, 2016)

LeNet 99.1 99.1
CIFAR-10 81.7 81.4
CaffeNet 56.9 56.0

Top5 Accuracy in ImageNet (Guo et al, 2016)

CaffeNet 77.12 76.64

VGG16 83.10 87.60 LeNet 99.12 99.13
GoogleNet ~ 88.82 88.64 Scene Labelling 73.89 73.31
SqueezeNet 79.72 79.16 VGG16 88.44 87.54

Accuracy on a variety of networks/applications (own work)

Copyright ASIC Design Services 2018



T

' S C Local Memory Addressing the Computation and
Design Services Promotion Memory Problem

A for (row=0; row<R; row+=Tr) {
for (col=0, col<C; col+=Tc){
for (to=0; to<M; to+=Tm){

External data transfer for (ti=0; ti<N; ti+=Tn){
//Load Output feature maps
//Load weights -
! //Load input feature maps Loop pipelining
1 for (i=0; i<K; i++){{ Loop unrolling

for (j=0; j<K; j++){{
for (trr=row; trr<min(row+Tr,R); trr++){
_ . for (tcc=col; tcc<min(col+Tc,C); tcc++){ _
On chip data computation D N N too:V Loop unrolling
for (tii=ti; tiikmin(ti+Tn,N); tii++){
output_fml[too][trr][tcc] += weights[too][tii][i][j]*input_fm[tii][S*trr+i] [S*tcc+)]
Il 13338,

External data transfer I //Store Output feature maps
H
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' S C Local Memory Addressing the Computation and
Design Services Promotion Memory Problem

A for (row=0; row<R; row+=Tr) {
for (col=0, col<C; col+=Tc){
for (to=0; to<M; to+=Tm){

External data transfer for (ti=0; ti<N; ti+=Tn){
HHload Outputfeature-maps
//Load weights
J //Load input feature maps Loop pipelining
4 for (i=0; i<K; i++){{ Loop unrolling

for (j=0; j<K; j++){{
for (trr=row; trr<min(row+Tr,R); trr++){
. . for (tcc=col; tcc<min(col+Tc,C); tcc++){ _
On chip data computation Tor (e e TR toojV Loop unrolling
for (tii=ti; tiikmin(ti+Tn,N); tii++){
output_fm[too][trr][tcc] += weights[too][tii][i][j]*input_fm[tii][S*trr+i] [S*tcc+)]
HHH

} / Local memory promotion
External data transfer //Store Output feature maps

1}
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Design Services

Double buffering

Addressing the Computation and

Memory Problem

o %

Ping-pong operation

Compute

Input buff 0 |Output buff O Input buff 1 |Output buff O

Input buff 0 |Output buff 1 Input buff 1 |Output buff 1

Load

Input buff 1

Input buff O

Input buff 1

Input buff O

Store

Output buff 1

Output buff O
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S C Buffer Ports Addressing the Computation and

Design Services Memory Problem

Data Weight Bias Data
Buffers Buffers Buffers Buffers
Input Buffer Output Buffer
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Design Services Desigh Space Exploration

* Roofline model
e Design search
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Design Services Roofline Model Design Space Exploration

* Implementation can either be
computation-bounded or memory- /Computational roof (GOPS)
bounded :

* Model performance to off-chip memory
traffic

Computational roof Algorithm 2

Att Perf = mi
tt Perf mm{ CTC ration X BW

Algorithm 1

Attainable performance (GOPS)

Computation to communication ratio (OP/Byte access)
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Design Services DESign search Design Space Exploration

Optimal platform design parameters

120

# of operation

Comp roof =
p f # of execution cycles

[EY
o
o

[00]
o

# of operation

CTC =
# of external data access

i
o

Attainable performance (GOPS)

Computation to communication ratio (OP/Byte access)
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R S Core Deep Learning

@\D—oll

Core
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Core Deep Learning
Design Services Features an embedded FPGA solution

Core generator features

e Full pipeline from convolutional neural network description to FPGA implementation
* We only need the target platform or resource availability and the network architecture
* Network retraining for memory footprint minimisation
e Support for different network layers
e Convolutional layer
* Fully connected layer
e Pooling layer
e Activation layers
e Convolutional layers can implement filters of any size and stride
* Pooling layers supporting arbitrary kernel size
e Support for padding
* AXI memory interface for external RAM
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Core Deep Learning
Design Services Core Interface an embedded FPGA solution

External

Control IP W

r 1

: :

- 1

I

: APB Interface AXI Interface -

: :

1 1

1 1

1 1

- 1

I Input Output -

i Buffers Buffers -
s | s -

o o 1

sil 2 || 8 :
5 ! = S I
L 5 = . . 1
: S S Computing Engine !

1 1

1 1

] PE PE PE :

: :

1 [
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. Core Deep Learning
Design Services A scalable solution an embedded FPGA solution

User specified

e Platform (M2S090, MPF300T ...)
* Platform resources available for deep learning solution
* MACC units
* LSRAM memory blocks
 UuSRAM memory blocks I 1108 1 s 1
* Available memory bandwidth
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Core Deep Learning
: : Framework flow
Design Services AMewo o an embedded FPGA solution

Network . Design space :
. Quantization = & p. == SystemVerilog
description exploration
- =D
= ~wee—  Core
i i
il I3 SMcrosiy
:::,; . ', POLARFIRE"
ln FPGA
: \
*2 Libero

Copyright ASIC Design Services 2018



v
/ \ l C Core Deep Learning

Design Services an embedded FPGA solution

Copyright ASIC Design Services 2018



ASIC

Tiny-YOLOv2

Design Services

Core Deep Learning
an embedded FPGA solution

e Fully Convolutional Neural Network - 9 Convolutional Layers
* convolution operation + batch normalisation + activation + pooling

* Trained end-to-end on Pascal VOC dataset

* Quantized and finetuned from provided base network by Joseph Redmon
* Tiny YOLO @ https://pjreddie.com/darknet/yolo/

* 5 fps on Microsemi M2S090

CANNCEENTNERE
EREEEP~NHEEN
===E=b Q‘bﬂ‘qi==== Object P;obability
...m&;ﬂ z =it alialal l---lllllll-lllnll'

e
..V ; " ‘.." Coordinates Class Probabilities
ﬁﬁ”é§7&ﬂﬂlll
= T Multiple predictions per grid location
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Tiny—YO LOV?2 Core Deep Learning

Design Services an embedded FPGA solution

416 x 416 < ,_ -r;"_"v?_"

216
32
18.82

0.381
*Slice — DSP Slice/Math Block
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Tiny-YO LOV?2 Core Deep Learning

Design Services an embedded FPGA solution

41131 48%
48310 56%
72 64%
72 66%
74 88%
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AS l C Tiny'YOLOVZ on Core Deep Learning

Design Services Microsemi PolarFire an embedded FPGA solution

416 x 416 < ,_ -r;"_"v?_"

28
245
74.24
0.339
*Slice — DSP Slice/Math Block
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Tiny'YO LOvV2 on Core Deep Learning
Design Services Microsemi PolarFire an embedded FPGA solution

70039 23%
98703 33%
1440 52%
602 63%
723 78%
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Core Deep Learning

QueStlons an embedded FPGA solution

Design Services
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