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Core Deep Learning
an embedded FPGA solution

Outline

• Brief introduction to deep learning
• Convolutional neural networks on FPGAs
• Addressing the computation problem
• Addressing the memory problem
• Core Deep Learning framework
• Demo
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Deep Learning Introduction

• Deep Learning Setup
• Deep Learning Overview
• Convolutional Neural Networks
• Applications 
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Evaluate Deep Learning Introduction
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Deep Learning 
Overview
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Deep Learning

Trainable

Feature Extractor Classifier

• Traditionally hand-crafted features
• Time consuming design
• Application Specific

• Deep Learning
• Feature Learning
• Trainable Feature Extractor
• Requires lots of training data

• Became viable with improvement 
in
• Improved Training Techniques
• Availability of Training Data
• Improved processing power

• Trainable Classifier generally used

Deep Learning Introduction
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Convolutional Neural 
Network
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Deep Learning Introduction
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CORE AI
a deep learning FPGA framework

Feature Extractor

Multichannel
Convolution

Subsampling

Input

Non-Linear 
Activation 
Function

Feature Maps

Output of Preceding Layer is 
used as input

Output is used as input to the 
following layer

Activation function applied 
independently to each 

element

Pooling
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Applications

• Applications:
• Consumer
• Defence
• Industrial
• Medical
• Surveillance

Pose Estimation
Cao et al, 2017

Target Detection and Classification in SAR
Chen et al. 2016

Deep Learning Introduction

Crowd Segmentation
Kang and Wang, 2014

Depth from Monocular Images
Lui et al, 2015
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Deep Learning Flow 
Summary

Training Stage

CNN

Large 
Datasets

Optimization 
Algorithm

• Platform: Local GPUs or GPUs in the cloud
• Has required parallel processing power and 

memory for efficient training

Inference Stage

• Actual use of CNN in the field (deployment)

• Can continue to use CPUs or GPUs here
• CPU - Inefficient and slow with CNNs
• GPU – Large initial power budget, still 

general purpose, large space footprint, 
require control CPU

• We suggest FPGAs – low power, small, network 
specific optimised solution

Input 
Sample

Trained CNN Output
Machine 
learning 
expert

Deep Learning Introduction
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Convolutional Neural Networks on FPGAs

• Why FPGAs
• Applications
• Complexity analysis
• Challenges 
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Why FPGAs

Deep Learning

• Total solution size/footprint
• Flexibility
• Low-power
• Deep Learning algorithms running 

alongside other SOFT IP cores
• Security

Convolutional Neural Networks on FPGAs
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Applications

Moving the processing to the node

Convolutional Neural Networks on FPGAs

Solutions can be packaged into battery-operated 
consumer products
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Complexity analysis Convolutional Neural Networks on FPGAs

You Only Look Once:
Redmon et al, 2016

Convolution layers Fully connected layers
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𝐶𝑜𝑛𝑣𝑡𝑖𝑚𝑒 = 𝑂(𝑁 ×𝑀 × 𝐾2 × 𝑅 × 𝐶)

𝑃𝑜𝑜𝑙𝑡𝑖𝑚𝑒 = 𝑂(𝑁 × 𝑅 × 𝐶)

𝐶𝑜𝑛𝑣𝑠𝑝𝑎𝑐𝑒 = 𝑂(𝑁 ×𝑀 × 𝐾2)

Convolutional Neural Networks on FPGAs

R

C

M

N

S*C+K-S

K

K
S*

R
+K

-S

Weight set 1

Weight set 2

Weight set 3
Weight set 1 Weight set 2 Weight set 3

Input feature maps Output feature maps

Complexity analysis

Copyright ASIC Design Services 2018



Convolutional Neural Networks on FPGAs

𝐹𝐶𝑡𝑖𝑚𝑒 = 𝑂(𝑁 ×𝑀)

𝐹𝐶𝑠𝑝𝑎𝑐𝑒 = 𝑂(𝑁 ×𝑀)
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Complexity analysis Convolutional Neural Networks on FPGAs

You Only Look Once:
Redmon et al, 2016

Convolution layers Fully connected layers
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Complexity analysis Convolutional Neural Networks on FPGAs
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Challenges Convolutional Neural Networks on FPGAs

Convolutional Neural Network Challenges
• Computational-intensive
• Frequent memory access
• Difficult to deploy on custom hardware platforms

FPGA limitations
• BRAM
• DSP resources
• Logic elements
• External memory bandwidth
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Addressing the Computation and Memory 
Problem

• Sources of parallelism
• Tiling
• Loop optimizations
• Optimal math block configurations
• Quantization
• Double buffering
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Addressing the Computation and
Memory Problem

Sources of 
Parallelism

Kernel level parallelism

R

C

M

N

S*C+K-S

K

K

S*
R

+K
-S

Weight set 1

Weight set 2

Weight set 3
Weight set 1 Weight set 2 Weight set 3

Input feature maps Output feature maps

Copyright ASIC Design Services 2018



Addressing the Computation and
Memory Problem

Sources of 
Parallelism

Input feature map parallelism
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Addressing the Computation and
Memory Problem

Sources of 
Parallelism

Output feature map parallelism
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Tiling Addressing the Computation and
Memory Problem

for (row=0; row<R; row++) {
for (col=0, col<C; col++){

for (to=0; to<M; to++){
for (ti=0; ti<N; ti++){

for (i=0; i<K; i++){
for (j=0; j<K; j++){

output_fm[to][row][col] += weights[to][ti][i][j]*input_fm[ti][S*row+i] [S*col+j]
}}}}}}
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Tiling Addressing the Computation and
Memory Problem

for (row=0; row<R; row+=Tr) {
for (col=0, col<C; col+=Tc){

for (to=0; to<M; to+=Tm){
for (ti=0; ti<N; ti+=Tn){

//Load Output feature maps
//Load weights
//Load input feature maps

for (trr=row; trr<min(row+Tr,R); trr++){
for (tcc=col; tcc<min(col+Tc,C); tcc++){

for (too=to; too<min(to+Tm,M); too++){
for (tii=ti; tii<min(ti+Tn,N); tii++){

for (i=0; i<K; i++){
for (j=0; j<K; j++){

output_fm[too][trr][tcc] += weights[too][tii][i][j]*input_fm[tii][S*trr+i] [S*tcc+j]
}}}}}}

//Store Output feature maps
}}}}

External data transfer

External data transfer

On chip data computation

Layer Input Convolution Output

T_c

T_r

T_m
T_n
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Loop Pipelining and 
Unrolling

Addressing the Computation and
Memory Problem

for (row=0; row<R; row+=Tr) {
for (col=0, col<C; col+=Tc){

for (to=0; to<M; to+=Tm){
for (ti=0; ti<N; ti+=Tn){

//Load Output feature maps
//Load weights
//Load input feature maps

for (i=0; i<K; i++){{
for (j=0; j<K; j++){{

for (trr=row; trr<min(row+Tr,R); trr++){
for (tcc=col; tcc<min(col+Tc,C); tcc++){

for (too=to; too<min(to+Tm,M); too++){
for (tii=ti; tii<min(ti+Tn,N); tii++){

output_fm[too][trr][tcc] += weights[too][tii][i][j]*input_fm[tii][S*trr+i] [S*tcc+j]
}}}}}}

//Store Output feature maps
}}}}

External data transfer

On chip data computation

Loop pipelining

Loop unrolling

Loop unrolling

External data transfer
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Computing Engine Addressing the Computation and
Memory Problem
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DOT Product Mode

• Convolution implemented as a large 
number of multiply-accumulate 
operations

• Microsemi Math blocks can implement 
a DOTP mode

• Two multiply operations and an 
addition operation in a single clock 
cycle 

Addressing the Computation and
Memory Problem

P= 𝐵 8: 0 × 𝐴 17: 9 + (𝐵 17: 9 × 𝐴 8: 0 )
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Cascading MACC 
units

Addressing the Computation and
Memory Problem

P= 𝐵 8: 0 × 𝐴 17: 9 + (𝐵 17: 9 × 𝐴 8: 0 ) + C
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Quantization

..0 0 1 1 0 0 1 0 0 0 0 1 1 0 0

Data quantisation

• High-precision multiply-accumulate
• Use dynamic fixed point per layer

• Significant bits selected through 
analysis of network using 
representative test set

• High-precision source networks
• Networks are retrained for lower 

precision to regain close to original 
performance

Addressing the Computation and
Memory Problem
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Quantization

Network Floating-point 8-bit

CaffeNet 77.12 76.64

VGG16 88.10 87.60

GoogLeNet 88.82 88.64

SqueezeNet 79.72 79.16

Top5 Accuracy in ImageNet (Guo et al, 2016)

Network Floating-point 8-bit

LeNet 99.1 99.1

CIFAR-10 81.7 81.4

CaffeNet 56.9 56.0

Accuracy on a variety of datasets (Gysel, 2016)

Accuracy on a variety of networks/applications (own work)

Network Floating-point 8-bit

LeNet 99.12 99.13

Scene Labelling 73.89 73.31

VGG16 88.44 87.54

Addressing the Computation and
Memory Problem
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Addressing the Computation and
Memory Problem

for (row=0; row<R; row+=Tr) {
for (col=0, col<C; col+=Tc){

for (to=0; to<M; to+=Tm){
for (ti=0; ti<N; ti+=Tn){

//Load Output feature maps
//Load weights
//Load input feature maps

for (i=0; i<K; i++){{
for (j=0; j<K; j++){{

for (trr=row; trr<min(row+Tr,R); trr++){
for (tcc=col; tcc<min(col+Tc,C); tcc++){

for (too=to; too<min(to+Tm,M); too++){
for (tii=ti; tii<min(ti+Tn,N); tii++){

output_fm[too][trr][tcc] += weights[too][tii][i][j]*input_fm[tii][S*trr+i] [S*tcc+j]
}}}}}}

//Store Output feature maps
}}}}

External data transfer

On chip data computation

Loop pipelining

Loop unrolling

Loop unrolling

External data transfer

Local Memory 
Promotion
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Local Memory 
Promotion

Addressing the Computation and
Memory Problem

for (row=0; row<R; row+=Tr) {
for (col=0, col<C; col+=Tc){

for (to=0; to<M; to+=Tm){
for (ti=0; ti<N; ti+=Tn){

//Load Output feature maps
//Load weights
//Load input feature maps

for (i=0; i<K; i++){{
for (j=0; j<K; j++){{

for (trr=row; trr<min(row+Tr,R); trr++){
for (tcc=col; tcc<min(col+Tc,C); tcc++){

for (too=to; too<min(to+Tm,M); too++){
for (tii=ti; tii<min(ti+Tn,N); tii++){

output_fm[too][trr][tcc] += weights[too][tii][i][j]*input_fm[tii][S*trr+i] [S*tcc+j]
}}}}}}

}
//Store Output feature maps

}}}

External data transfer

External data transfer

On chip data computation

Local memory promotion

Loop pipelining

Loop unrolling

Loop unrolling
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Double buffering Addressing the Computation and
Memory Problem

Ping-pong operation

Compute Input buff 0 Output buff 0 Input buff 1 Output buff 0 Input buff 0 Output buff 1 Input buff 1 Output buff 1
Load Input buff 1 Input buff 0 Input buff 1 Input buff 0
Store Output buff 1 Output buff 0
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Buffer Ports Addressing the Computation and
Memory Problem

Input Buffer

Data
Buffers

Weight
Buffers

Bias
Buffers

…. …. ….

Output Buffer

Data
Buffers

….
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Design Space Exploration

• Roofline model
• Design search
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Design Space ExplorationRoofline Model

• Implementation can either be 
computation-bounded or memory-
bounded

• Model performance to off-chip memory 
traffic
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Computation to communication ratio (OP/Byte access)

Computational roof (GOPS)

Algorithm 2

Algorithm 1

𝐴𝑡𝑡 𝑃𝑒𝑟𝑓 = 𝑚𝑖𝑛 ቊ
𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑟𝑜𝑜𝑓
𝐶𝑇𝐶 𝑟𝑎𝑡𝑖𝑜𝑛 × 𝐵𝑊
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Design Space ExplorationDesign search
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𝐶𝑜𝑚𝑝 𝑟𝑜𝑜𝑓 =
# 𝑜𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛

# 𝑜𝑓 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑐𝑦𝑐𝑙𝑒𝑠

𝐶𝑇𝐶 =
# 𝑜𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛

# 𝑜𝑓 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑑𝑎𝑡𝑎 𝑎𝑐𝑐𝑒𝑠𝑠

Optimal platform design parameters
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Core Deep Learning

Copyright ASIC Design Services 2018



Features

Core generator features

• Full pipeline from convolutional neural network description to FPGA implementation
• We only need the target platform or resource availability and the network architecture

• Network retraining for memory footprint minimisation
• Support for different network layers

• Convolutional layer
• Fully connected layer
• Pooling layer
• Activation layers

• Convolutional layers can implement filters of any size and stride
• Pooling layers supporting arbitrary kernel size
• Support for padding
• AXI memory interface for external RAM

Core Deep Learning
an embedded FPGA solution
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Core Interface Core Deep Learning
an embedded FPGA solution

AXI Interface
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A scalable solution

User specified

• Platform (M2S090, MPF300T …)
• Platform resources available for deep learning solution

• MACC units
• LSRAM memory blocks
• uSRAM memory blocks

• Available memory bandwidth

Core Deep Learning
an embedded FPGA solution
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Framework flow

Network 
description

Quantization
Design space 
exploration

SystemVerilog

Core Deep Learning
an embedded FPGA solution
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Demos Core Deep Learning
an embedded FPGA solution
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Tiny-YOLOv2

Coordinates Class Probabilities

Object Probability

• Fully Convolutional Neural Network - 9 Convolutional Layers
• convolution operation + batch normalisation + activation + pooling

• Trained end-to-end on Pascal VOC dataset
• Quantized and finetuned from provided base network by Joseph Redmon

• Tiny YOLO @ https://pjreddie.com/darknet/yolo/
• 5 fps on Microsemi M2S090

Multiple predictions per grid location

Core Deep Learning
an embedded FPGA solution
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Tiny-YOLOv2

Input image shape 416 x 416

Number of convolutional layers 9

Number of fully connected layers 0

GOPs (MULACC) 7

GOPs/s 7.782

Runtime (ms) 1028

Runtime (ms) 216

Performance [GOPs/s] 32

Efficiency [GOPs/s/W] 18.82

Multiplier Efficiency [GOPs/s/Slice*] 0.381

*Slice – DSP Slice/Math Block

Core Deep Learning
an embedded FPGA solution
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Tiny-YOLOv2

4LUT 41131 48%

DFF 48310 56%

RAM64x18 72 64%

RAM1K18 72 66%

MACC 74 88%

Core Deep Learning
an embedded FPGA solution
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Tiny-YOLOv2 on 
Microsemi PolarFire

Input image shape 416 x 416

Number of convolutional layers 9

Number of fully connected layers 0

GOPs (MULACC) 7

GOPs/s 7.782

Runtime (ms) 1028

Runtime (ms) 28

Performance [GOPs/s] 245

Efficiency [GOPs/s/W] 74.24

Multiplier Efficiency [GOPs/s/Slice*] 0.339

*Slice – DSP Slice/Math Block

Core Deep Learning
an embedded FPGA solution

Copyright ASIC Design Services 2018



Tiny-YOLOv2 on 
Microsemi PolarFire

4LUT 70039 23%

DFF 98703 33%

uSRAM (64x12) 1440 52%

LSRAM (20 k bit) 602 63%

MACC 723 78%

Core Deep Learning
an embedded FPGA solution
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Questions Core Deep Learning
an embedded FPGA solution
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