
|

Memory-Efficient Fast Fourier Transform on Streaming 
Data by Fusing Permutations
François Serre and Markus Püschel

- Department of Computer Science



Motivation

FFT

© Jeferson Santiago da Silva, use with author’s permission

We focus on the implementation of small, but performant designs



Motivation: Implementing FFTs

Pease FFT on 2n = 16 elements

High throughput (1 transform per cycle), but high use of ressources!



We have full-thrust… …but other positions 
are missing

© karlenepetitt.blogspot.com, use with author’s permission



Motivation: Implementing FFTs [Milder et al., TODAES12]

Pease FFT on 2n = 16 elements

Streaming reuse with a streaming width of 2k = 4

Iterative reuse

Streaming and iterative reuse



It
e

ra
ti

ve
re

u
se

© karlenepetitt.blogspot.com, use with author’s permission



Motivation: Implementing FFTs [Milder et al., TODAES12]

Pease FFT on 2n = 16 elements

Streaming reuse with a streaming width of 2k = 4

Iterative reuse

Streaming and iterative reuse

How do we stream
these permutations?

Luckily, all the permutations shown here are linear!



Streaming Linear permutation [Serre/Hollenstein/Püschel, FPGA16] 

Bit-reversal on 8 elements

A permutation is linear if it maps linearly the bits of its addresses

Almost all permutations in 
DSP algorithms are linear: 

 Identity

 Perfect shuffle

 Stride permutations

 Hadamard reordering

 Gray code reordering



Streaming Linear permutation [Serre/Hollenstein/Püschel, FPGA16] 

Bit reversal on 16 elements

Switching
network

Switching
network

Memory 
banks

 Minimal number of RAM banks [Koehn/Athanas, ICCAD16] Corollary 1 

 Minimal latency on the temporal part [Koehn/Athanas, ICCAD16] Lemma 2

 Minimal RAM capacity [Koehn/Athanas, ICCAD16] Section 2

 Minimal number of switches [Serre/Püschel, LAA16] 

 Lightweight control (And/Xor based)

 Limitation: single linear permutation



Fusing linear permutations

Streaming and iterative reuse

Streaming and iterative reuse with fused permutation



It
e

ra
ti

ve
re

u
se

© karlenepetitt.blogspot.com, use with author’s permission



Fusing linear permutations

Streaming and iterative reuse

Streaming and iterative reuse with fused permutation

A linear permutation datapath only works with a SINGLE permutation!



Fusing linear permutations

Streaming bit-reversal (8 elements)

Streaming perfect-shuffle (8 elements)

Streaming bit-reversal and perfect-shuffle

Recipe:

 Use the matrix decomposition
on both permutations

 Group temporal permutations

 Easy in theory

 «Touchy» in practice…

 Implement switching networks 
handling several permutations 
(details in paper…)



Fusing linear permutations

Streaming and iterative reuse

Streaming and iterative reuse with fused permutation



Results
 16 bits fixed-point

 Targeting ±400MHz on a Virtex 7

 Vivado 2014.4 after place and route

 Temporal permutations explicitly requested as BRAMs

Other measurements are available on the generator website



2

20

200

3 4 5 6 7 8 9 10 11 12 13 14

n

Iterative reuse

Proposed

[Milder]

Radix-2 Pease FFT, size 2n, 2k = 4 ports
Memory [BRAMs]



10

100

1000

10000

3 4 5 6 7 8 9 10 11 12

n

Proposed

[Milder], Iterative reuse

Radix-2 Pease FFT, size 2n, 2k = 4 ports
Gap [cycles per transform]



0

100

200

300

400

500

600

700

3 4 5 6 7 8 9 10 11 12 13 14

n

Iterative reuse

Proposed

[Milder]

Radix-2 Pease FFT, size 2n, 2k = 4 ports
Area [slices]



Limitations of the generator
 Twiddle factors storage is not optimized

 Many features of the Spiral generator are not supported yet

 Pipelining decisions are made with a basic heuristic



Related work
 Generic streaming permutation methods can be used instead:

 Koehn/Athanas, ICCAD16

 Milder et al., DATE09

 Parhi, IEEE Trans. CAS II 92 (register based)

 Specific streaming permutations:

 Järvinen et al., ASAP04 (stride permutation, register based)

 Garrido et al., TCAS II 17 (bit-reversal, register based)



Generator for linear permutations/FFTs and benchmarks:
https://acl.inf.ethz.ch/research/hardware


