
|

Memory-Efficient Fast Fourier Transform on Streaming 
Data by Fusing Permutations
François Serre and Markus Püschel

- Department of Computer Science



Motivation

FFT

© Jeferson Santiago da Silva, use with author’s permission

We focus on the implementation of small, but performant designs



Motivation: Implementing FFTs

Pease FFT on 2n = 16 elements

High throughput (1 transform per cycle), but high use of ressources!



We have full-thrust… …but other positions 
are missing

© karlenepetitt.blogspot.com, use with author’s permission



Motivation: Implementing FFTs [Milder et al., TODAES12]

Pease FFT on 2n = 16 elements

Streaming reuse with a streaming width of 2k = 4

Iterative reuse

Streaming and iterative reuse



It
e

ra
ti

ve
re

u
se

© karlenepetitt.blogspot.com, use with author’s permission



Motivation: Implementing FFTs [Milder et al., TODAES12]

Pease FFT on 2n = 16 elements

Streaming reuse with a streaming width of 2k = 4

Iterative reuse

Streaming and iterative reuse

How do we stream
these permutations?

Luckily, all the permutations shown here are linear!



Streaming Linear permutation [Serre/Hollenstein/Püschel, FPGA16] 

Bit-reversal on 8 elements

A permutation is linear if it maps linearly the bits of its addresses

Almost all permutations in 
DSP algorithms are linear: 

 Identity

 Perfect shuffle

 Stride permutations

 Hadamard reordering

 Gray code reordering



Streaming Linear permutation [Serre/Hollenstein/Püschel, FPGA16] 

Bit reversal on 16 elements

Switching
network

Switching
network

Memory 
banks

 Minimal number of RAM banks [Koehn/Athanas, ICCAD16] Corollary 1 

 Minimal latency on the temporal part [Koehn/Athanas, ICCAD16] Lemma 2

 Minimal RAM capacity [Koehn/Athanas, ICCAD16] Section 2

 Minimal number of switches [Serre/Püschel, LAA16] 

 Lightweight control (And/Xor based)

 Limitation: single linear permutation



Fusing linear permutations

Streaming and iterative reuse

Streaming and iterative reuse with fused permutation



It
e

ra
ti

ve
re

u
se

© karlenepetitt.blogspot.com, use with author’s permission



Fusing linear permutations

Streaming and iterative reuse

Streaming and iterative reuse with fused permutation

A linear permutation datapath only works with a SINGLE permutation!



Fusing linear permutations

Streaming bit-reversal (8 elements)

Streaming perfect-shuffle (8 elements)

Streaming bit-reversal and perfect-shuffle

Recipe:

 Use the matrix decomposition
on both permutations

 Group temporal permutations

 Easy in theory

 «Touchy» in practice…

 Implement switching networks 
handling several permutations 
(details in paper…)



Fusing linear permutations

Streaming and iterative reuse

Streaming and iterative reuse with fused permutation



Results
 16 bits fixed-point

 Targeting ±400MHz on a Virtex 7

 Vivado 2014.4 after place and route

 Temporal permutations explicitly requested as BRAMs

Other measurements are available on the generator website



2

20

200

3 4 5 6 7 8 9 10 11 12 13 14

n

Iterative reuse

Proposed

[Milder]

Radix-2 Pease FFT, size 2n, 2k = 4 ports
Memory [BRAMs]



10

100

1000

10000

3 4 5 6 7 8 9 10 11 12

n

Proposed

[Milder], Iterative reuse

Radix-2 Pease FFT, size 2n, 2k = 4 ports
Gap [cycles per transform]



0

100

200

300

400

500

600

700

3 4 5 6 7 8 9 10 11 12 13 14

n

Iterative reuse

Proposed

[Milder]

Radix-2 Pease FFT, size 2n, 2k = 4 ports
Area [slices]



Limitations of the generator
 Twiddle factors storage is not optimized

 Many features of the Spiral generator are not supported yet

 Pipelining decisions are made with a basic heuristic



Related work
 Generic streaming permutation methods can be used instead:

 Koehn/Athanas, ICCAD16

 Milder et al., DATE09

 Parhi, IEEE Trans. CAS II 92 (register based)

 Specific streaming permutations:

 Järvinen et al., ASAP04 (stride permutation, register based)

 Garrido et al., TCAS II 17 (bit-reversal, register based)



Generator for linear permutations/FFTs and benchmarks:
https://acl.inf.ethz.ch/research/hardware


