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What this talk is about…

Recent work: Source-level, in-system 
debugging of HLS circuits

• Debug instrumentation is inserted at 
compile time

• Changing this instrumentation (to trace 
new data) requires a recompile

In this work: Debug instrumentation still 
inserted at compile time BUT can be 
configured at runtime (fast customization)

Impact: Achieves software like compile 
times (~1sec) between debug iterations
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High-Level Synthesis

Software designers need a full ecosystem of tools:

• Testing, debugging, optimization….

Debugging: When do we have to do in-system debug?

• Simulation may take too long

• Bug may be dependent on system interactions, IO traffic, etc.

For certain bugs we have to perform in-system debug, observing the actual hardware

HLS

Software Hardware

(FPGA)
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Hardware Debug Tools

Not practical for a software designer!

RTL User Chooses Signals

Run
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Previous Work: In-System Debug Framework for HLS

Capture system-level bugs  Need to run at-speed, on-chip

Solution: Record and Replay

Limited on-chip memory → Need to select what we want to record and use memory efficiently

HLS

3. Execute and record

4. Stop and 
retrieve

5. Software-like debug using recorded data

On-Chip Memory
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1. User selects variables, 
tool determines signals, 
inserts instrumentation

void qSort(int *arr) {

int piv, beg[N], end[N];

int i=0;

int L, R, swap;

…

}

2. Compile



Previous Work: Taking Advantage of HLS Scheduling 

Debug Instrumentation

• Recorded signals change each cycle

• 50x-100x more memory efficient than 
traditional Embedded Logic Analyzer 
(ELA) approach

• Circuit-by-Circuit custom 
compression

• Based on signals selected for 
tracing (compression algorithms)

• Selecting a different subset of 
signals requires a recompile

*Signal-Tracing Techniques for In-System FPGA Debugging of High-Level Synthesis Circuits”. IEEE TCAD 2017. J Goeders, SJE Wilton. 10
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HLS Overlays: Software-like Debug Turn-Around Times
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D

Debug Turn

Workflow Using the Debug Overlay
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Key: The more general/flexible the overlay – the larger the area overhead

Our Approach: determine a set of useful capabilities, and architect an overlay that is 
just flexible enough to implement these
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What can this overlay do?

Our approach: determine a set of useful capabilities, and architect an 
overlay that is just flexible enough to implement these.

1. Selective Variable Tracing

• Select user visible variables to trace

2. Selective Function Tracing

• Select region of code to trace

3. Conditional Buffer Freeze

• Specify a condition on the circuit that, when true, causes 
recording in the trace buffer to halt.
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Selective Variable Tracing: User Perspective

Select/de-select 
variables from 
pane in Debug 
GUI
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Architecture to Support Capability
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Selective Variable Tracing Architecture – Initial Ideas…

Could have a configurable memory that enables which RTL signals (that map to C code variables) 
we want to trace. Program this memory at runtime…

Aside: Intel’s In-System Memory Content Editor
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Could associate a bit in Config RAM with each RTL signal that corresponds to a C code variable…
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Configurable RAM

Selective Variable Tracing Architecture – Initial Ideas…



Could associate a bit in Config RAM with each RTL signal that corresponds to a C code variable…
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Selective Variable Tracing Architecture: Variant A

Key: Every bit is 
associated with a state in 
the user circuit
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Selective Variable Tracing Architecture: Variant B
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Variant B: Line Packer – Architectural Parameter “G”

f0

overflow

f1f2f3f4f5f6

Trace Buffer

trace data

w0w1w2w3

w0w0w1w0w1w2w0w1w2w3w1w2w3w2w3w3

f4f5f6

• G: granularity

• Increasing G splits the 
incoming trace data into 
smaller words – more fine 
grained packing

• Increasing G also increases 
the steering logic/area 
overhead
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Variant B – Multi-Bit Configuration ROM
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Selective Function Tracing: User Perspective

Select Functions 
from pane in 
Debug GUI
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Selective Function Tracing: Same architecture!
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Condition

a < 0, line 94

Conditional Buffer Freeze – User Perspective
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Conditional Buffer Freeze
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Conditional Buffer Freeze – Architectural Parameter “C”

• Increase C units to express 
a more complex condition

• Example: Stop tracing when 
err flag 1 OR err flag 2 goes 
high

• “Stop write controller” 
receives signals from all C 
units – OR trigger function
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Evaluation: Run-Times
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User Circuit
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Baseline debug instrumentation 
is 20% size of the user circuit*

Variant A increases the size by 39 
ALMs on average, and 1 M9K – cheap!

*Signal-Tracing Techniques for In-System FPGA Debugging of High-Level Synthesis Circuits”. IEEE TCAD 2017. J Goeders, SJE Wilton.
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Architecture vs. Trace Window Length

Architectural enhancements improve trace window length 35
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Overhead: Variant B vs. Variant A
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Overhead: Conditional Units

Area increases with number of C units with small decrease in Fmax 37
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How can a FPGA vendor use these results?

Provide a library of overlays.

Depending on the user’s debugging needs, and resources available – select appropriate library:

• Economy Library: cheaper overlay (i.e. only selective variable tracing)

• Deluxe Library: supports more capabilities (i.e. conditional trigger functions)

Can also take advantage of:

• User input / estimates to user

• Variable reconstruction 38

Overlay Overlay Overlay 

Library
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Future Work

Currently, the user selects the overlay + capabilities to insert.

• Next step – create a tool that automatically determines the type of overlay to insert 
based on estimated unused resources

The overlay is passive (i.e. only monitors the user circuit)

• Investigate limited controllability

• Allow for simple “what if” scenarios

40



Summary

Achieved software like compile times between debug turns in a limited context via an 
HLS oriented overlay

• Can personalize the overlay at runtime without a recompile

• Overlay supports a set of capabilities (selective variable/function tracing, conditional 
buffer freeze)

• Overheads are significant (335 ALMs for Variant B/G=2 line packer, 249 ALMs for C=1 
unit) on top of the Baseline instrumentation

Worth it for the option to have software like compile times during debug
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Thank you
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Additional
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Circuit User Module
(ALMs)

Instrumentation (100%) Proportion
in Debug 
PartitionFixed hlsd

(ALMs)
Trace Scheduler

(ALMs)

adpcm 7019 480 1749 24.1%

aes 7135 479 754 14.7%

blowfish 3038 528 1187 36.1%

dfadd 3605 495 1115 30.9%
dfdiv 6000 532 1124 21.6%

dfmul 1881 483 675 38.1%
dfsin 11864 529 2904 22.4%
gsm 4147 473 782 23.2%
jpeg 18735 506 2781 14.9%
mips 1441 505 419 39.1%

motion 6470 520 524 13.9%
sha 1720 514 334 33.0%
combined 66522 583 13525 17.5%
Mean 10736 509 2114 25.4%

Roughly ¼ is debug instrumentation.  

Previous Work – Instrumentation Overhead


