
Architecture Exploration for HLS-Oriented
FPGA Debug Overlays

Al-Shahna Jamal, Jeffrey Goeders, Steve Wilton

FPGA’18 - Monterey, CA

What this talk is about…

2

compile to FPGA (slow)

customize overlay (fast)

User Circuit Debug Circuit

On-Chip
Memory

Recent work: Source-level, in-system
debugging of HLS circuits

• Debug instrumentation is inserted at
compile time

• Changing this instrumentation (to
trace new data) requires a recompile

What this talk is about…

Recent work: Source-level, in-system
debugging of HLS circuits

• Debug instrumentation is inserted at
compile time

• Changing this instrumentation (to trace
new data) requires a recompile

In this work: Debug instrumentation still
inserted at compile time BUT can be
configured at runtime (fast customization)

Impact: Achieves software like compile
times (~1sec) between debug iterations

3

compile to FPGA (slow)

customize overlay (fast)

User Circuit instrumented

with Flexible Overlay

once, at compile time (slow)

Debug Scenario

between debug iterations (fast)

Overlay Configuration

Bits

User Circuit Debug Overlay

Overlay Configuration
Bits

On-Chip
Memory

Outline

• Motivation for In-System Debug

• Previous Work: In-System Debug Framework for HLS
• Debug Instrumentation at compile time

• This paper: HLS Debug Overlay to allow customization at runtime

• Evaluation

• Future Work

4

Outline

• Motivation for In-System Debug

• Previous Work: In-System Debug Framework for HLS
• Debug Instrumentation at compile time

• This paper: HLS Debug Overlay to allow customization at runtime

• Evaluation

• Future Work

5

High-Level Synthesis

Software designers need a full ecosystem of tools:

• Testing, debugging, optimization….

Debugging: When do we have to do in-system debug?

• Simulation may take too long

• Bug may be dependent on system interactions, IO traffic, etc.

For certain bugs we have to perform in-system debug, observing the actual hardware

HLS

Software Hardware

(FPGA)

6

Hardware Debug Tools

Not practical for a software designer!

RTL User Chooses Signals

Run

7

Outline

• Motivation for In-System Debug

• Previous Work: In-System Debug Framework for HLS
• Debug Instrumentation at compile time

• This paper: HLS Debug Overlay to allow customization at runtime

• Evaluation

• Future Work

8

Previous Work: In-System Debug Framework for HLS

Capture system-level bugs  Need to run at-speed, on-chip

Solution: Record and Replay

Limited on-chip memory → Need to select what we want to record and use memory efficiently

HLS

3. Execute and record

4. Stop and
retrieve

5. Software-like debug using recorded data

On-Chip Memory

9

1. User selects variables,
tool determines signals,
inserts instrumentation

void qSort(int *arr) {

int piv, beg[N], end[N];

int i=0;

int L, R, swap;

…

}

2. Compile

Previous Work: Taking Advantage of HLS Scheduling

Debug Instrumentation

• Recorded signals change each cycle

• 50x-100x more memory efficient than
traditional Embedded Logic Analyzer
(ELA) approach

• Circuit-by-Circuit custom
compression

• Based on signals selected for
tracing (compression algorithms)

• Selecting a different subset of
signals requires a recompile

*Signal-Tracing Techniques for In-System FPGA Debugging of High-Level Synthesis Circuits”. IEEE TCAD 2017. J Goeders, SJE Wilton. 10

Outline

• Motivation for In-System Debug

• Previous Work: In-System Debug Framework for HLS
• Debug Instrumentation at compile time

• This paper: HLS Debug Overlay to allow customization at runtime

• Evaluation

• Future Work

11

HLS Overlays: Software-like Debug Turn-Around Times

12

D

Debug Turn

Workflow Using the Debug Overlay

13

Design (.v) +
Insert Overlay

Instrumentation

Compile to
Bitstream
(lengthy)

Personalize
Overlay

(fast)

Run

View/Analyze
Captured Data

Found
root

cause?

Fix Error

Program (.c)

HLS Compiler
(Legup)

Key: The more general/flexible the overlay – the larger the area overhead

Our Approach: determine a set of useful capabilities, and architect an overlay that is
just flexible enough to implement these

14

What can this overlay do?

Our approach: determine a set of useful capabilities, and architect an
overlay that is just flexible enough to implement these.

1. Selective Variable Tracing

• Select user visible variables to trace

2. Selective Function Tracing

• Select region of code to trace

3. Conditional Buffer Freeze

• Specify a condition on the circuit that, when true, causes
recording in the trace buffer to halt.

15

Selective Variable Tracing: User Perspective

Select/de-select
variables from
pane in Debug
GUI

16

Architecture to Support Capability

17

Selective Variable Tracing Architecture – Initial Ideas…

Could have a configurable memory that enables which RTL signals (that map to C code variables)
we want to trace. Program this memory at runtime…

Aside: Intel’s In-System Memory Content Editor

18

Could associate a bit in Config RAM with each RTL signal that corresponds to a C code variable…

Trace Buffer Memory

r3 r1

0

0

1

0

0

1

1

0

1

r1

r2

r3

r4

r5

r6

r7

r8

...

mem

C
o

n
fi
g
u

ra
b

le
 T

ra
c
in

g
 L

o
g
ic

? Steering Logic?

r9

Trace Buffer Memory

r1r9

19

Configurable RAM

Selective Variable Tracing Architecture – Initial Ideas…

Could associate a bit in Config RAM with each RTL signal that corresponds to a C code variable…

20

Trace Buffer Memory

r3 r1

0

0

1

0

0

1

1

0

1

r1

r2

r3

r4

r5

r6

r7

r8

...

mem

C
o

n
fi
g
u

ra
b

le
 T

ra
c
in

g
 L

o
g
ic

? Steering Logic?

r9

Trace Buffer Memory

r1r9

Configurable RAM

Selective Variable Tracing Architecture – Initial Ideas…

Selective Variable Tracing Architecture: Variant A

Key: Every bit is
associated with a state in
the user circuit

21

current_state

0

1

1

1

1

0

1

1

1-bit RAM

trace_enable

User Circuit

Trace Scheduler

Trace Buffer Memory
r3 r1

r8 r6 r5

r9

ractive

S1

S2

S6

S7

S3

r4

rn

ctrl

S4

ctrl

mem

r2 r1...

Config RAM

mem r12 r10 ctrl

recode_state

recode_state0

recode_staten

Selective Variable Tracing Architecture: Variant B

Page 2222

Line Packer

packed_data

User Circuit

r1rn

current_state Trace Scheduler

...

r3 r1 ctrl

Trace Buffer
S7, S1

S4, S3

r9

S1

S7

r3 r1

r9

ctrl

memS4 r10r12 ctrl

tim
e

r10r12 ctrl

num_words

Config RAM

00

10

00

10

10

00

00

10

S0

S1

S2

S3

S4

S5

S6

S7

ractive

S3 ctrl

ctrl

recode_state

recode_state0

recode_staten

Variant B: Line Packer – Architectural Parameter “G”

f0

overflow

f1f2f3f4f5f6

Trace Buffer

trace data

w0w1w2w3

w0w0w1w0w1w2w0w1w2w3w1w2w3w2w3w3

f4f5f6

• G: granularity

• Increasing G splits the
incoming trace data into
smaller words – more fine
grained packing

• Increasing G also increases
the steering logic/area
overhead

23

Variant B: Line Packer – Architectural Parameter “G”

f0

overflow

f1f2f3f4f5f6

Trace Buffer

trace data

w0w1w2w3

w0w0w1w0w1w2w0w1w2w3w1w2w3w2w3w3

f4f5f6

• G: granularity

• Increasing G splits the
incoming trace data into
smaller words – more fine
grained packing

• Increasing G also increases
the steering logic/area
overhead

24

Variant B: Line Packer – Architectural Parameter “G”

f0

overflow

f1f2f3f4f5f6

Trace Buffer

trace data

w0w1w2w3

w0w0w1w0w1w2w0w1w2w3w1w2w3w2w3w3

f4f5f6

• G: granularity

• Increasing G splits the
incoming trace data into
smaller words – more fine
grained packing

• Increasing G also increases
the steering logic/area
overhead

25

Variant B – Multi-Bit Configuration ROM

26

Line Packer

packed_data

User Circuit

r1rn

current_state Trace Scheduler

...

r3 r1 ctrl

Trace Buffer
S7, S1

S4, S3

r9

S1

S7

r3 r1

r9

ctrl

memS4 r10r12 ctrl

tim
e

r10r12 ctrl

num_words

Config RAM

00

10

00

10

10

00

00

10

S0

S1

S2

S3

S4

S5

S6

S7

ractive

S3 ctrl

ctrl

recode_state

recode_state0

recode_staten

Multi-Bit
RAM

Selective Function Tracing: User Perspective

Select Functions
from pane in
Debug GUI

27

Selective Function Tracing: Same architecture!

28

Line Packer

packed_data

User Circuit

r1rn

current_state Trace Scheduler

...

r3 r1 ctrl

Trace Buffer
S7, S1

S4, S3

r9

S1

S7

r3 r1

r9

ctrl

memS4 r10r12 ctrl

tim
e

r10r12 ctrl

num_words

Config RAM

00

10

00

10

10

00

00

10

S0

S1

S2

S3

S4

S5

S6

S7

ractive

S3 ctrl

ctrl

Condition

a < 0, line 94

Conditional Buffer Freeze – User Perspective

29

Conditional Buffer Freeze

30

lp_full

data_mask target_value state op

Comparator
 Stop

Write

Controller

Line Packer

User Circuit

r1rn

current_state
Trace Scheduler

...

num_words

Trace Buffer

Conditional Freeze Buffer Unit(s)

1'b0

set 1'b1

D Q

packed_data

trace_buffer_disable

W

W

Communication and Control Logic

00

10

00

00

10

00

00

10

Config RAM

Conditional Buffer Freeze – Architectural Parameter “C”

• Increase C units to express
a more complex condition

• Example: Stop tracing when
err flag 1 OR err flag 2 goes
high

• “Stop write controller”
receives signals from all C
units – OR trigger function

31

lp_full

data_mask target_value state op

Comparator
 Stop

Write

Controller

trace_data

Trace Buffer

Conditional Freeze Buffer Unit(s)

1'b0

set 1'b1

D Q

trace_buffer_disable

W

Communication and Control Logic

Outline

• Motivation for In-System Debug

• Previous Work: In-System Debug Framework for HLS
• Debug Instrumentation at compile time

• This paper: HLS Debug Overlay to allow customization at runtime

• Evaluation

• Future Work

32

Evaluation: Run-Times

33

286

314

1
0

50

100

150

200

250

300

350

Previous Work: User Circuit
+ Instrumentation

Current Work: User Circuit +
Overlay

Configuring Overlay

C
o

m
p

ile
 T

im
e

(s
ec

o
n

d
s)

Compile Time vs. Overlay Personalization Time (seconds)

User Circuit

Trace Scheduler

Active Signals

r3 r1

r8 r6 r5

r9

ractive

current_state

S1

S2

S6

S7

S3

rn

ctrl

S4

ctrl

mem

mem

r2 r1...

r12 r10 ctrl

r4

Variant A Overlay – Impact on Area

Baseline debug instrumentation
is 20% size of the user circuit*

Variant A increases the size by 39
ALMs on average, and 1 M9K – cheap!

*Signal-Tracing Techniques for In-System FPGA Debugging of High-Level Synthesis Circuits”. IEEE TCAD 2017. J Goeders, SJE Wilton.
34

current_state

0

1

1

1

1

0

1

1

1-bit RAM

trace_enable

User Circuit

Trace Scheduler

Trace Buffer Memory
r3 r1

r8 r6 r5

r9

ractive

S1

S2

S6

S7

S3

r4

rn

ctrl

S4

ctrl

mem

r2 r1...

Config RAM

mem r12 r10 ctrl

recode_state

recode_state0

recode_staten

Architecture vs. Trace Window Length

Architectural enhancements improve trace window length 35

0

2000

4000

6000

8000

10000

12000

14000

Baseline Variant A

G=0

Variant B

G=2

Variant B

G=4

Variant B

G=8

Variant B

G=16

T
ra

ce
 W

in
d

o
w

 L
en

g
th

 (
cy

cl
es

)

Overlay Variants

100% 50% 25% 10%

Overhead: Variant B vs. Variant A

0

20

40

60

80

100

120

140

160

0

1000

2000

3000

4000

5000

6000

7000

Baseline Variant A

G=0

Variant B

G=2

Variant B

G=4

Variant B

G=8

Variant B

G=16

F
m

ax
(M

H
z)

A
re

a
O

v
er

h
ea

d
 (

A
L

M
s)

Architecture

area

frequency

Area goes up dramatically for high granularity in line packer
36

Overhead: Conditional Units

Area increases with number of C units with small decrease in Fmax 37

130

132

134

136

138

140

142

144

146

148

150

0

200

400

600

800

1000

1200

C=1 C=2 C=3 C=4

F
m

ax
 (

M
H

z)

A
re

a
O

v
er

h
ea

d
 (

A
L

M
s)

C (Number of Conditional Buffer Freeze Units)

area

frequency

How can a FPGA vendor use these results?

Provide a library of overlays.

Depending on the user’s debugging needs, and resources available – select appropriate library:

• Economy Library: cheaper overlay (i.e. only selective variable tracing)

• Deluxe Library: supports more capabilities (i.e. conditional trigger functions)

Can also take advantage of:

• User input / estimates to user

• Variable reconstruction 38

Overlay Overlay Overlay

Library

Outline

• Motivation for In-System Debug

• Previous Work: In-System Debug Framework for HLS
• Debug Instrumentation at compile time

• This paper: HLS Debug Overlay to allow customization at runtime

• Evaluation

• Future Work

39

Future Work

Currently, the user selects the overlay + capabilities to insert.

• Next step – create a tool that automatically determines the type of overlay to insert
based on estimated unused resources

The overlay is passive (i.e. only monitors the user circuit)

• Investigate limited controllability

• Allow for simple “what if” scenarios

40

Summary

Achieved software like compile times between debug turns in a limited context via an
HLS oriented overlay

• Can personalize the overlay at runtime without a recompile

• Overlay supports a set of capabilities (selective variable/function tracing, conditional
buffer freeze)

• Overheads are significant (335 ALMs for Variant B/G=2 line packer, 249 ALMs for C=1
unit) on top of the Baseline instrumentation

Worth it for the option to have software like compile times during debug

41

Thank you

42

Additional

43

44

Circuit User Module
(ALMs)

Instrumentation (100%) Proportion
in Debug
PartitionFixed hlsd

(ALMs)
Trace Scheduler

(ALMs)

adpcm 7019 480 1749 24.1%

aes 7135 479 754 14.7%

blowfish 3038 528 1187 36.1%

dfadd 3605 495 1115 30.9%
dfdiv 6000 532 1124 21.6%

dfmul 1881 483 675 38.1%
dfsin 11864 529 2904 22.4%
gsm 4147 473 782 23.2%
jpeg 18735 506 2781 14.9%
mips 1441 505 419 39.1%

motion 6470 520 524 13.9%
sha 1720 514 334 33.0%
combined 66522 583 13525 17.5%
Mean 10736 509 2114 25.4%

Roughly ¼ is debug instrumentation.

Previous Work – Instrumentation Overhead

