

A HOG-based Real-time and Multi-scale Pedestrian Detector Demonstration System on FPGA

J. Dürre, D. Paradzik and H. Blume

FPGA 2018

Outline

Pedestrian detection with HOG/SVM

- HOG feature calculation
- Clustering and merging of overlapping detections

Contributions of this work

- Trade-off between complexity and performance
- New merging method suitable for hardware implementation

Results

- Comparison to other works
- Real-time demonstration system

HOG? Isn't it outdated?!

- Pedestrian detection based on feature description with histogram of oriented gradients (HOG) and SVM classification (Dalal / Triggs, CVPR, 2005)
- Detection performance: ~0.4 MR @ 0.1 FPPI

- State-of-the-art (CNN-based): ~0.1 MR @ 0.1 FPPI ¹
- Humans: ~0.05 MR @ 0.1 FPPI ¹
- HOG vs CNN significant difference in computational complexity
- CNNs require 300x to 13,000x more energy to compute compared to HOG²
- For many applications HOG is still a suitable trade-off between complexity and performance!

¹ Zhang et al., "Towards Reaching Human Performance in Pedestrian Detection", TPAMI, 2017 ² Suleiman et al., "Towards Closing the Energy Gap Between HOG and CNN Features for Embedded Vision", ISCAS, 2017

HOG-features for pedestrian detection

Merging of mutli-scale detections

 Dalal suggests the iterative Mean–Shift algorithm for clustering and merging of detections

Merging of mutli-scale detections

- Dalal suggests the iterative Mean-Shift algorithm for clustering and merging of detections
 - Calculation of "mass" centers of the positive detection window centers
 - Moving / shifting of all window centers towards "mass" centers
 - Recalculate and shift until all centers remain still

Merging of mutli-scale detections

- Dalal suggests the iterative Mean-Shift algorithm for clustering and merging of detections
 - Calculation of "mass" centers of the positive detection window centers
 - Moving / shifting of all window centers towards "mass" centers
 - Recalculate and shift until all centers remain still

 Computationally complex and irregular

$$y_m = H_h(y_m) \cdot \left[\sum_{i=1}^n \left(\frac{|H_i|^{-\frac{1}{2}} \cdot t(P_i) \cdot e^{-\frac{1}{2} \cdot (y_m - y_i)^T \cdot H_i^{-1} \cdot (y_m - y_i)}}{\sum_{i=1}^n |H_i|^{-\frac{1}{2}} \cdot t(P_i) \cdot e^{-\frac{1}{2} \cdot (y_m - y_i)^T \cdot H_i^{-1} \cdot (y_m - y_i)}} \right) \cdot H_i^{-1} \cdot y_i \right]$$

Contributions

	Publication									
Processing step	2009 Kadato et al.	2011 Negi et al.	2012 Mizuno et al.	2013 Hahnle et al.	2015 Yuan et al.	2015 Rettkow- ski et al.	2015 Ma et al.	2018 this work		
Scaling	×	×	×	\checkmark	×	×	×	 Image: A second s		
HOG feat. extr.	\checkmark	✓	\checkmark	\checkmark	✓	\checkmark	\checkmark	✓		
SVM classification	×	•	✓	\checkmark	✓	•	✓	✓		
Multi-scale processing	×	×	×	\checkmark	×	×	✓	✓		
Merging	×	×	×	×	•	×	×	✓		

- Many FPGA implementations to be found in literature
 - Merging is rarely considered in hardware implementation
 - A reason could be its complexity and irregularity
- > Novel merging method, suitable for hardware implementation
- New approach for a trade-off between complexity and detection performance in HOG feature extraction

image

Architecture overview

- 1 pixel per clock, continuously
- Parallel HOG/SVM calculation for different scales

Hardware structure

Trade-off between complexity and detection performance in HOG feature calculation

Trade-off between complexity and detection performance in HOG feature calculation

Some complexity of the algorithm comes with jumping back and forth between hierarchy levels!

Trade-off between complexity and detection performance in HOG feature calculation

Skipping the Gaussian filter and the inter-cell interpolation:

- Far less complex bottom-up approach
- Minor loss in detection performance of about ~3%

Comparison of HOG/SVM-impl. to other work

	Year	FPGA	LUTs	Reg.	DSPs	BRAM [krit]	Clock rate	Resolution	Data rate	LUT eff. n	Detection rate /	Comment
Kadota et al.	2009	Intel Stratix II	3,794 [LUT6]	6,699	12 [18x18]	?	127.49	640x480	3	1.27	-/-	no Gaussian filter, interpolation + classification
Negi et al.	2011	Xilinx Virtex-5	17,383 [LUT6]	2,181	36 [25x18]	?	44.85	640x480	112	29.42	96% / 0.2 (2x10 ⁻¹)	no Gaussian filter + interpolation, AdaBoost
Mizuno et al.	2012	Intel Cyclone IV	34,403 [LUT4]	23,247	68 [18x18]	340	40	800×600	72	25.11	87% / 0.0001 (10 ⁻⁴)	no Gaussian filter
Hahnle et al.	2013	Xilinx Virtex-5	5,188 [LUT6]	5,178	49 [25x18]	1,188	135 + 270	1920x1080	64	63.16	84% / 0.001 (10 ⁻³)	no interpolation
Yuan et al.	2015	Xilinx Spartan-6	9,955 [LUT6]	13,350	66 [18x18]	208	100	800x600	47	15.11	? ?	
Rettkowski et al.	2015	Xilinx Zynq	21,297 [LUT6]	5,942	4 [25x18]	-	82.2	1920x1080	40	31.59	90% / 0.04 (4x10 ⁻²)	no Gaussian filter + interp., AdaBoost, ext. DDR
Ma et al.	2015	Xilinx Virxtex-6	98,642 [LUT6]	8,694	63 [25x18]	4,579	150	640x480	250 (est.)	3.45	90% / 0.0001 (10 ⁻⁴)	
this work	2018	Intel Cyclone IV	4,937 [LUT4]	2,751	47 [9x9]	849	70 + 140	1920x1080	33	101.28	87% / 0.0001 (10 ⁻⁴)	no Gaussian filter, linear bin-interpolation
this work	2018	Intel Stratix V	3,529 [LUT6]	2,657	26 [27x27]	815	142 + 284	1920x1080	68	94.46	87% / 0.0001 (10 ⁻⁴)	no Gaussian filter, linear bin-interpolation

LUT Efficiency:
$$\eta = \frac{pixels/s}{(\alpha \cdot \#LUTs) \cdot f_{clk}}$$

 $\alpha = 1.0$ for 4 – input LUTs $\alpha = 1.5$ for 6 – input LUTs

Comparison of HOG/SVM-impl. to other work

	Year	FPGA	LUTs	Reg.	DSPs	BRAM [kBit]	Clock rate [MHz]	Resolution	Data rate [FPS]	LUT eff. η	Detection rate / FPPW	Comment
Kadota et al.	2009	Intel Stratix II	3,794 [LUT6]	6,699	12 [18x18]	?	127.49	640x480	3	1.27	- / -	no Gaussian filter, interpolation + classification
Negi et al.	2011	Xilinx Virtex-5	17,383 [LUT6]	2,181	36 [25x18]	?	44.85	640x480	112	29.42	96% / 0.2 (2x10 ⁻¹)	no Gaussian filter + interpolation, AdaBoost
Mizuno et al.	2012	Intel Cyclone IV	34,403 [LUT4]	23,247	68 [18x18]	340	40	800x600	72	25.11	87% / 0.0001 (10 ⁻⁴)	no Gaussian filter
Hahnle et al.	2013	Xilinx Virtex-5	5,188 [LUT6]	5,178	49 [25x18]	1,188	135 + 270	1920x1080	64	63.16	84% / 0.001 (10 ⁻³)	no interpolation
Yuan et al.	2015	Xilinx Spartan-6	9,955 [LUT6]	13,350	66 [18x18]	208	100	800×600	47	15.11	? ?	
Rettkowski et al.	2015	Xilinx Zynq	21,297 [LUT6]	5,942	4 [25x18]	-	82.2	1920x1080	40	31.59	90% / 0.04 (4x10 ⁻²)	no Gaussian filter + interp., AdaBoost, ext. DDR
Ma et al.	2015	Xilinx Virxtex-6	98,642 [LUT6]	8,694	63 [25x18]	4,579	150	640x480	250 (est.)	3.45	90% / 0.0001 (10 ⁻⁴)	
this work	2018	Intel Cyclone IV	4,937 [LUT4]	2,751	47 [9x9]	849	70 + 140	1920x1080	33	101.28	87% / 0.0001 (10 ⁻⁴)	no Gaussian filter, linear bin-interpolation
this work	2018	Intel Stratix V	3,529 [LUT6]	2,657	26 [27x27]	815	142 + 284	1920x1080	68	94.46	87% / 0.0001 (10 ⁻⁴)	no Gaussian filter, linear bin-interpolation

LUT Efficiency:
$$\eta = \frac{pixels/s}{(\alpha \cdot \#LUTs) \cdot f_{clk}}$$

 $\alpha = 1.0$ for 4 – input LUTs $\alpha = 1.5$ for 6 – input LUTs

image

Architecture overview

- 1 pixel per clock, continuously
- Parallel HOG/SVM calculation for different scales

Hardware structure

Instead of complex mean-shift: plausibility check

- High SVM-score implies high likelihood of a true positive detection
- Highly overlapping detections are most likely multiple detections of the same object
- Objects always cause multiple overlapping detections, single non-overlapping detections are most likely false

New algorithm suitable for hardware implementation

- 1. Sort detections by SVM-score
- 2. For each entry: scan list for 50% overlapping detections
- 3. Removal of overlapped detections
- 4. Entry is true positive, if at least 2 overlapped detections have been found

Position	Index	Score
1	1	1,42
2	2	1,27
3	3	0,85
4	4	1,31

Instead of complex mean-shift: plausibility check

- High SVM-score implies high likelihood of a true positive detection
- Highly overlapping detections are most likely multiple detections of the same object
- Objects always cause multiple overlapping detections, single non-overlapping detections are most likely false

New algorithm suitable for hardware implementation

- 1. Sort detections by SVM-score
- 2. For each entry: scan list for 50% overlapping detections
- 3. Removal of overlapped detections
- 4. Entry is true positive, if at least 2 overlapped detections have been found

Position	Index	Score
1	1	1,42
2	4	1,31
3	2	1,27
4	3	0,85

Instead of complex mean-shift: plausibility check

- High SVM-score implies high likelihood of a true positive detection
- Highly overlapping detections are most likely multiple detections of the same object
- Objects always cause multiple overlapping detections, single non-overlapping detections are most likely false

New algorithm suitable for hardware implementation

- 1. Sort detections by SVM-score
- 2. For each entry: scan list for 50% overlapping detections
- 3. Removal of overlapped detections
- 4. Entry is true positive, if at least 2 overlapped detections have been found

Position	Index	Score
1	1	1,42
2	4	1,31
3	2	1,27
4	3	0,85

Instead of complex mean-shift: plausibility check

- High SVM-score implies high likelihood of a true positive detection
- Highly overlapping detections are most likely multiple detections of the same object
- Objects always cause multiple overlapping detections, single non-overlapping detections are most likely false

New algorithm suitable for hardware implementation

- 1. Sort detections by SVM-score
- 2. For each entry: scan list for 50% overlapping detections
- 3. Removal of overlapped detections
- 4. Entry is true positive, if at least 2 overlapped detections have been found

Position	Index	Score	
1	1	1,42	
2	4	1,31	•
3	2	1,27	
4	3	0,85	

Instead of complex mean-shift: plausibility check

- High SVM-score implies high likelihood of a true positive detection
- Highly overlapping detections are most likely multiple detections of the same object
- Objects always cause multiple overlapping detections, single non-overlapping detections are most likely false

New algorithm suitable for hardware implementation

- 1. Sort detections by SVM-score
- 2. For each entry: scan list for 50% overlapping detections
- 3. Removal of overlapped detections
- 4. Entry is true positive, if at least 2 overlapped detections have been found

Position	Index	Score	
1	1	1,42	
2	4	1,31	
3	2	1,27	
4	3	0,85	

Instead of complex mean-shift: plausibility check

- High SVM-score implies high likelihood of a true positive detection
- Highly overlapping detections are most likely multiple detections of the same object
- Objects always cause multiple overlapping detections, single non-overlapping detections are most likely false

New algorithm suitable for hardware implementation

- 1. Sort detections by SVM-score
- 2. For each entry: scan list for 50% overlapping detections
- 3. Removal of overlapped detections
- 4. Entry is true positive, if at least 2 overlapped detections have been found

10

Instead of complex mean-shift: plausibility check

- High SVM-score implies high likelihood of a true positive detection
- Highly overlapping detections are most likely multiple detections of the same object
- Objects always cause multiple overlapping detections, single non-overlapping detections are most likely false

New algorithm suitable for hardware implementation

- 1. Sort detections by SVM-score
- 2. For each entry: scan list for 50% overlapping detections
- 3. Removal of overlapped detections
- 4. Entry is true positive, if at least 2 overlapped detections have been found

eibniz

Position	Index	Score	
1	1	1,42	
2	4	1,31	
3	2	1,27	
4	3	0,85	

Instead of complex mean-shift: plausibility check

- High SVM-score implies high likelihood of a true positive detection
- Highly overlapping detections are most likely multiple detections of the same object
- Objects always cause multiple overlapping detections, single non-overlapping detections are most likely false

New algorithm suitable for hardware implementation

- 1. Sort detections by SVM-score
- 2. For each entry: scan list for 50% overlapping detections
- 3. Removal of overlapped detections
- 4. Entry is true positive, if at least 2 overlapped detections have been found

Instead of complex mean-shift: plausibility check

- High SVM-score implies high likelihood of a true positive detection
- Highly overlapping detections are most likely multiple detections of the same object
- Objects always cause multiple overlapping detections, single non-overlapping detections are most likely false

New algorithm suitable for hardware implementation

- 1. Sort detections by SVM-score
- 2. For each entry: scan list for 50% overlapping detections
- 3. Removal of overlapped detections
- 4. Entry is true positive, if at least 2 overlapped detections have been found

Instead of complex mean-shift: plausibility check

- High SVM-score implies high likelihood of a true positive detection
- Highly overlapping detections are most likely multiple detections of the same object
- Objects always cause multiple overlapping detections, single non-overlapping detections are most likely false

New algorithm suitable for hardware implementation

- 1. Sort detections by SVM-score
- 2. For each entry: scan list for 50% overlapping detections
- 3. Removal of overlapped detections
- 4. Entry is true positive, if at least 2 overlapped detections have been found

Small arithmetic complexity, run-time complexity dominated by sorting

(e.g. Heapsort: O(n log n))

Demonstration System

- COTS Altera / Intel DE2–115 dev. board with Cyclone IV FPGA
- 9 scales (factor 1.1), 800x600, 20 FPS
- Resolution and framerate limited by SDRAM

Synthesis results

Intel Cyclone IV EP4CE115 800x600, 50+100 MHz, 9 scales	LUTs	Reg.	DSPs	BRAM [kBit]
Pedestrian Detector	47,175	25,158	491	1,222
- HOG/SVM (9 instances)	41,906	23,138	423	1,137
- Bilinear scaling (8 instances)	1,611	664	64	6
– Merging	1,249	109	4	28
Infrastructure (Framework)	3,343	2,137	0	543
- Camera Interface	889	552	0	432
- VGA Interface	903	488	0	51
 SDRAM Interface 	1081	870	0	59
Total	50,518	27,295	491	1,765
(% of available)	(44%)	(24%)	(92%)	(45%)

- Small hardware costs for merging module
- Number of scales limited by DSPs and BRAM routing

Summary

- For many embedded pedestrian detection applications HOG/SVM is still a suitable trade-off between complexity and performance
- Merging of overlapping detections was rarely considered in hardware implementations, supposedly because of its complexity and irregularity

This work...

- shows a new approach for the trade-off between algorithm simplifications and performance in HOG/SVM
- presents a highly efficient streaming architecture
- introduces a new method for merging, particularly suitable for hardware implementations
- shows a real-time demonstration system on a small COTS FPGA board