
Institute of 
Microelectronic Systems

A HOG-based Real-time and Multi-scale Pedestrian 
Detector Demonstration System on FPGA

J. Dürre, D. Paradzik and H. Blume

FPGA 2018



Institute of Microelectronic Systems

Dipl.-Ing. Jan Dürre – FPGA 2018

Pedestrian detection with HOG/SVM
 HOG feature calculation
 Clustering and merging of overlapping detections

Contributions of this work
 Trade-off between complexity and performance
 New merging method suitable for hardware implementation

Results
 Comparison to other works
 Real-time demonstration system

Outline

1



Institute of Microelectronic Systems

Dipl.-Ing. Jan Dürre – FPGA 2018

 Pedestrian detection based on feature 
description with histogram of oriented 
gradients (HOG) and SVM classification  
(Dalal / Triggs, CVPR, 2005)

 Detection performance: ~0.4 MR @ 0.1 FPPI

HOG? Isn’t it outdated?!

 HOG vs CNN - significant difference in computational complexity
 CNNs require 300x to 13,000x more energy to compute compared to HOG 2

 For many applications HOG is still a suitable trade-off between complexity and 
performance!

 State-of-the-art (CNN-based): ~0.1 MR @ 0.1 FPPI 1

 Humans: ~0.05 MR @ 0.1 FPPI 1

2 Suleiman et al., “Towards Closing the Energy Gap Between 
HOG and CNN Features for Embedded Vision”, ISCAS, 2017

1 Zhang et al., “Towards Reaching Human Performance 
in Pedestrian Detection”, TPAMI, 2017
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HOG-features for pedestrian detection
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Merging of mutli-scale detections

 Dalal suggests the iterative 
Mean-Shift algorithm for 
clustering and merging of 
detections
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Merging of mutli-scale detections
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 Dalal suggests the iterative 
Mean-Shift algorithm for 
clustering and merging of 
detections
 Calculation of “mass” centers of the 

positive detection window centers
 Moving / shifting of all window 

centers towards “mass” centers
 Recalculate and shift until all 

centers remain still
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Merging of mutli-scale detections
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 Dalal suggests the iterative 
Mean-Shift algorithm for 
clustering and merging of 
detections
 Calculation of “mass” centers of the 

positive detection window centers
 Moving / shifting of all window 

centers towards “mass” centers
 Recalculate and shift until all 

centers remain still

 Computationally complex 
and irregular

 Complexity: O(n2)
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 Many FPGA implementations to be found in literature
 Merging is rarely considered in hardware implementation
 A reason could be its complexity and irregularity

Contributions

Processing step

Publication
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Multi-scale processing        
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 Novel merging method, suitable for hardware implementation
 New approach for a trade-off between complexity and detection performance 

in HOG feature extraction
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 1 pixel per clock, continuously 
 Parallel HOG/SVM calculation for 

different scales

Architecture overview
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Trade-off between complexity and detection 
performance in HOG feature calculation
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Trade-off between complexity and detection 
performance in HOG feature calculation
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Some complexity of the algorithm comes with jumping back 
and forth between hierarchy levels!
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Skipping the Gaussian filter and the inter-cell interpolation:
 Far less complex bottom-up approach
 Minor loss in detection performance of about ~3%

Trade-off between complexity and detection 
performance in HOG feature calculation
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Comparison of HOG/SVM-impl. to other work
Year FPGA LUTs Reg. DSPs BRAM 

[kBit]
Clock rate 
[MHz]

Resolution Data rate
FPS

LUT eff. 
η

Detection rate / 
FPPW

Comment

Kadota
et al.

2009 Intel 
Stratix II

3,794
[LUT6]

6,699 12
[18x18]

? 127.49 640x480 3 1.27 - / - no Gaussian filter, 
interpolation + classification 

Negi
et al.

2011 Xilinx 
Virtex-5

17,383
[LUT6]

2,181 36
[25x18]

? 44.85 640x480 112 29.42 96% /
0.2 (2x10-1)

no Gaussian filter + 
interpolation, AdaBoost

Mizuno
et al.

2012 Intel 
Cyclone IV

34,403
[LUT4]

23,247 68
[18x18]

340 40 800x600 72 25.11 87% /
0.0001 (10-4)

no Gaussian filter

Hahnle
et al.

2013 Xilinx 
Virtex-5

5,188
[LUT6]

5,178 49
[25x18]

1,188 135 + 270 1920x1080 64 63.16 84% / 
0.001 (10-3)

no interpolation

Yuan
et al.

2015 Xilinx 
Spartan-6

9,955
[LUT6]

13,350 66
[18x18]

208 100 800x600 47 15.11 ? / ?

Rettkowski
et al.

2015 Xilinx
Zynq

21,297
[LUT6]

5,942 4
[25x18]

- 82.2 1920x1080 40 31.59 90% /
0.04 (4x10-2)

no Gaussian filter + interp., 
AdaBoost, ext. DDR

Ma
et al.

2015 Xilinx 
Virxtex-6

98,642
[LUT6]

8,694 63
[25x18]

4,579 150 640x480 250 (est.) 3.45 90% /
0.0001 (10-4)

this work 2018 Intel 
Cyclone IV

4,937
[LUT4]

2,751 47
[9x9]

849 70 + 140 1920x1080 33 101.28 87% /
0.0001 (10-4)

no Gaussian filter, linear 
bin-interpolation

this work 2018 Intel 
Stratix V

3,529
[LUT6]

2,657 26
[27x27]

815 142 + 284 1920x1080 68 94.46 87% /
0.0001 (10-4)

no Gaussian filter, linear 
bin-interpolation

𝜂𝜂 =
𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝𝑝𝑝/𝑝𝑝

𝛼𝛼 � #𝐿𝐿𝐿𝐿𝐿𝐿𝑝𝑝 � 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐
𝛼𝛼 = 1.0 for 4 − input LUTs
𝛼𝛼 = 1.5 for 6 − input LUTs
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New Merging Method
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Instead of complex mean-shift: plausibility check
 High SVM-score implies high likelihood of a true 

positive detection
 Highly overlapping detections are most likely 

multiple detections of the same object
 Objects always cause multiple overlapping 

detections, single non-overlapping detections are 
most likely false

New algorithm suitable for hardware implementation
1. Sort detections by SVM-score
2. For each entry: scan list for 50% overlapping detections
3. Removal of overlapped detections
4. Entry is true positive, if at least 2 overlapped detections 

have been found
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New Merging Method

Small arithmetic complexity, run-time complexity dominated by sorting

1
Instead of complex mean-shift: plausibility check
 High SVM-score implies high likelihood of a true 

positive detection
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multiple detections of the same object
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(e.g. Heapsort: O(n log n))
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Demonstration System

 COTS Altera / Intel DE2-115 dev. board with 
Cyclone IV FPGA

 9 scales (factor 1.1), 800x600, 20 FPS
 Resolution and framerate limited by SDRAM

HOG / SVM

FIFO

bi. scaling
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HOG / SVM

FIFO

bi. scaling

HOG / SVM

FIFO

. . .

. . .

bounding box 
generator

Camera IF

SDRAM IF

VGA IF

RGB->grey
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Intel Cyclone IV EP4CE115
800x600, 50+100 MHz, 9 scales

LUTs Reg. DSPs BRAM
[kBit]

Pedestrian Detector 47,175 25,158 491 1,222
- HOG/SVM (9 instances) 41,906 23,138 423 1,137
- Bilinear scaling (8 instances) 1,611 664 64 6
- Merging 1,249 109 4 28
Infrastructure (Framework) 3,343 2,137 0 543
- Camera Interface 889 552 0 432
- VGA Interface 903 488 0 51
- SDRAM Interface 1081 870 0 59
Total
(% of available)

50,518
(44%)

27,295
(24%)

491
(92%)

1,765
(45%)

Synthesis results
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 Small hardware costs for 
merging module

 Number of scales limited by 
DSPs and BRAM routing
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 For many embedded pedestrian detection applications HOG/SVM is still a 
suitable trade-off between complexity and performance

 Merging of overlapping detections was rarely considered in hardware 
implementations, supposedly because of its complexity and irregularity

This work…
 shows a new approach for the trade-off between algorithm simplifications and 

performance in HOG/SVM
 presents a highly efficient streaming architecture 
 introduces a new method for merging, particularly suitable for hardware 

implementations
 shows a real-time demonstration system on a small COTS FPGA board

Summary
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