
Towards a Uniform Template-based Architecture
for Accelerating 2D and 3D CNNs on FPGA 

Junzhong Shen, You Huang, Zelong Wang, Yuran Qiao, 
Mei Wen, Chunyuan Zhang

National University of Defense Technology, China

Feb 26, 2018



Outline

• 3D CNNs

• Motivation

• Template-based methodology

• Design Space Exploration

• Evaluations

• Future Work

2



3D CNNs: Efficient method for 
complicated computer vision applications
• Wide range of applications…

3

Medical image analysis [1]

Video classification [3]Human action recognition [2]



Features of 3D CNNs

Layers
Ops

(GFLOPS)

Data Transfer(MB) Time

(ms)In+Out Weights

CONV 38.4(99.9%) 99.0(27.7%) 17.7(26.7%) 31.9(97.3%)

ReLU 0.0(0.0%) 96.7(27.1%) 0.0(0.0%) 0.0(2.3%)

Pool 0.0(0%) 161.0(45.1%) 0.0(0.0%) 0.0(0.2%)

FC 0.0(0.1%) 0.1%(0.0%) 48.8(73.3%) 0.7(0.2%)

• Evaluation on a classical 3D CNN model (C3D [4])
• CONV layers are computationally-intensive

• FC layers are memory intensive

• Large amount of intermediate data

• Large number of computations

Similar to 2D CNN

More sensitive to memory bandwidth

Require higher computation power

4



Outline

• 3D CNNs

• Motivations

• Template-based methodology

• Design Space Exploration

• Evaluations

• Future Work

5



Motivations

• Advantages of FPGAs in accelerating CNNs
• Reconfigurability

• Higher computation ability, more energy-efficient

• High-level Synthesis (HLS) tools

• Few work focus on accelerating 3D CNN 
• Ignoring the increasing popularity of 3D CNN

• Higher computational complexity, greater memory demands

• 2D and 3D CNNs share similar computation pattern
• Unify 2D/3D CNNs into a single acceleration framework

• Using uniform templates for accelerator design

6



Outline

• 3D CNNs

• Motivation

• Template-based methodology

• Design Space Exploration

• Evaluations

• Future Work

7



Template-based Methodology

• Overall Flow
• Algorithm selection

• Common operations extraction

• Template designs

• Template-based architecture

• Advantages
• Generate accelerators in a short period of time

• Scalability of template-based design

• Make it easy to exploit the fine-grained parallelism of 
CNN algorithms

8



Template-based Methodology

• Algorithm selection

9

Ordinary convolution [5] Convert to Matrix Multiplication [6] Winograd algorithm [7]



Template-based Methodology

• Algorithm selection
• Computational complexity

• Extensibility

• Storage (data replication) 

10

F(2,3) F(22,32) F(23,33)

Algorithms muls adds muls adds muls Adds

Ordinary 6 4 36 32 216 208

Winograd 4 11 16 77 64 419

Over 3x saving in 

number of multiplications !

Computational 
complexity

L

H

HH

Extensibility Storage

Winograd

Convolution

Matrix multiplication



Template-based Methodology

• Winograd algorithm extension

11

1D:

2D:

3D:

 X, W and M are constant matrices
  is denoted as element-wise multiplications

Process of 3D Winograd algorithm (F(23,33))



Template-based Methodology

• Common operations extraction

12

 Both 2D and 3D Winograd transformations can be 

split into 1D Winograd transformations

 The operator-level parallelism of the element-wise 
multiplications on the 3D tiles can be performed 
repeatedly by multiplications on the 2D tiles

 Accumulations of a 3D tile can be performed by 

accumulations of the 2D tiles



Template-based Methodology

• Template design
• Building blocks for Winograd

algorithm
• Transformation

• Element-wise multiplication

• Accumulation

• Simple and resource saving
• Adders

• Multipliers

• Shifter

13



Template-based Methodology

• Architecture

14

• On-chip Buffers
• Tiled input/output feature maps

• Tiled weights

• Computation Engines
• Two levels of hierarchy
• PEs

• PUs

• Parallelism
• Inter kernel parallelism

• Inter output parallelism



Template-based Methodology

• Architecture

15

• On-chip Buffers
• Tiled input/output feature maps
• Tiled weights

• Computational Engines
• Two levels of hierarchy
• Supports for CONV、FC、ReLU and 

POOL layers computation

HLS description of computation engine

Parallel strategies



Template-based Methodology

• Architecture

16

• Performing the Winograd algorithms
• 2D/3D Winograd

• Organized by proposed templates
• Transformation arrays

• Element-Wise Multiplication Unit (EWMU)

• Parallelism
• Intra kernel (Operation-level) parallelism

• Intra Output parallelism

PE Design



Template-based Methodology

• Memory access optimization
• External memory access

17

 Strategy2 for CONV layers with 

large input feature maps

 Strategy3 for CONV layers with 

small input feature maps

 Increase both Bwon and Bwoff to 

facilitate fast DRAM-BRAM 

transfer

 Use multiple memory ports



Template-based Methodology

• Memory access optimization
• On-chip memory access

18

 Problems

• Severe on-chip memory access 

conflicts

• It is infeasible to fully split the 

memory blocks into register files

 Solution

• Step-by-step optimization strategy



Outline

• 3D CNNs

• Motivations

• Template-based Methodology

• Design Space Exploration

• Evaluations

• Future Work

19



Design Space Exploration

• Uniform analytical model for 2D/3D CNNs 
• Computational Roof

• Performance model

20

dim=

2, 2D CNN

3, 3D CNN

𝑍 = 𝑇𝑧 = 1 for 2D CNN

• Definition



Outline

• 3D CNNs

• Motivations

• Template-based methodology

• Design Space Exploration

• Evaluations

• Future Work

21



Evaluations

• Cross-layer parameters
• Minimal overall performance 

degradation 

• Optimal on-chip and off-chip 
bandwidth

• Resource utilization
• DSPs are no longer the limiting 

resource

• LUTs dominates the resource 
utilization

22



Evaluation Results

• VGG and C3D

23



Evaluation Results

• Performance and Energy Efficiency Comparison (2D CNN)

24

[5] [6] [8] [9] [7] [10] Our work

FPGA
Xilinx

XC7Z045

Altera

Stratix-V

Xilinx

Virtex 690t

Arria10

GX1150

Arria10

GX1150

Arria10

GX1150

Xilinx

Virtex 690t

Xilinx

VCU440

Frequency 150 120 150 150 303 385 150 200

CNN VGG VGG VGG VGG AlexNet VGG VGG VGG

Precision
16-bit 

fixed

8-16 bits 

fixed

16-bit 

fixed

8-16 bits 

fixed

16-bit 

float

16-bit

fixed

16-bit 

fixed

16-bit 

fixed

DSP Utilization 780(87%) 727(37%) 2833(78%)
1518(100

%)

1476(97

%)
2756(91%) 1376(38%) 1376(48%)

Throughput

(Gops)
137 118 354 645 1382 1790 570 821

DSP Efficiency 0.18 0.16 0.12 0.43 0.98 0.65 0.41 0.60



Evaluation Results

• Performance and Energy Efficiency Comparison (3D CNN)

25

Platforms CPU GPU FPGA

Device E5-2680 K40 GTX1080 VC709 VUS440

Technology 22nm 28nm 16nm 28nm 20nm

Power(W) 115 250 180 25 26

CONV(Gops) 60.3 1206.5 4375.7 474.3 940.6

CNN(Gops) 58.7 1174.0 4101.9 430.7 784.7

Latency(ms) 656.2 32.8 8.8 89.4 49.1

Speedup 1x 20.0x 69.9x 7.3x 13.4x

Gops/W
0.5

(1x)

4.7

(9.2x)

22.8

(44.6x)

17.1

(33.8x)

30.2

(60.3x)



Outline

• 3D CNNs

• Motivations

• Related Works

• Template-based methodology

• Evaluations

• Future work

26



Future Work

• Evaluations on the Winograd algorithm with different size
• F(43,33), F(63,33) …

• Design uniform templates and architecture for compressed models
• Sparse CNNs (Pruning, Quantization)

• Other fast algorithms
• FFT

• …

27



Thank You

shenjunzhong@nudt.edu.cn

28



References

29

[1] Kamnitsas, Konstantinos, et al. "Efficient multi-scale 3D CNN with fully

connected CRF for accurate brain lesion segmentation." Medical image
analysis 36 (2017): 61-78.

[2] Liu, Zhi, Chenyang Zhang, and Yingli Tian. "3d-based deep

convolutional neural network for action recognition with depth sequences."

Image and Vision Computing 55 (2016): 93-100.

[3] Karpathy, Andrej, et al. "Large-scale video classification with

convolutional neural networks." Proceedings of the IEEE conference on

Computer Vision and Pattern Recognition. 2014.

[4] Tran, Du, et al. "Learning spatiotemporal features with 3d convolutional

networks." Computer Vision (ICCV), 2015 IEEE International Conference
on. IEEE, 2015.

[5] Qiu, Jiantao, et al. "Going deeper with embedded fpga platform for

convolutional neural network." Proceedings of the 2016 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays. ACM, 2016.

[6] Suda, Naveen, et al. "Throughput-optimized OpenCL-based FPGA

accelerator for large-scale convolutional neural networks." Proceedings of
the 2016 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays. ACM, 2016.

[7] Aydonat, Utku, et al. "An OpenCL™ deep learning accelerator on Arria

10." Proceedings of the 2017 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays. ACM, 2017.

[9] Ma, Yufei, et al. "Optimizing loop operation and dataflow in FPGA

acceleration of deep convolutional neural networks." Proceedings of the

2017 ACM/SIGDA International Symposium on Field-Programmable Gate

Arrays. ACM, 2017.

[10] Zhang, Jialiang, and Jing Li. "Improving the performance of OpenCL-

based FPGA accelerator for convolutional neural network." Proceedings of

the 2017 ACM/SIGDA International Symposium on Field-Programmable

Gate Arrays. ACM, 2017.


