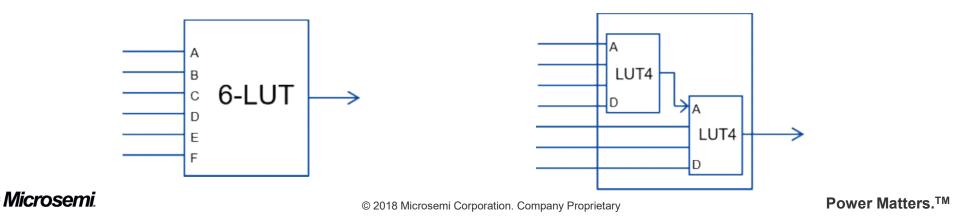
Improving FPGA Performance with a S44 LUT Structure

Wenyi Feng, Jonathan Greene Microsemi Corporation Alan Mishchenko Department of EECS, UC Berkeley

FPGA 2018, Monterey, CA

© 2018 Microsemi Corporation. Company Proprietary

Power Matters.TM 1


Motivation-1: Changing Technology

- Previous LUT studies were done in 1999-2005
 - LUT6 is best for performance
 - ~15% advantage over LUT4 at 180nm
 - LUT4 is best for area
 - Fracturable LUT6/ALM were invented to recoup part of this area gap
- Since then:
 - Process scaling has made interconnect delay more prominent
 - Inter-cluster delay grew 1.5x relative to intra-cluster/logic delays from 65nm to 14nm
 - A recent study found the LUT6 perf advantage declined to ~11% at 65nm
- We study the effect at 14nm

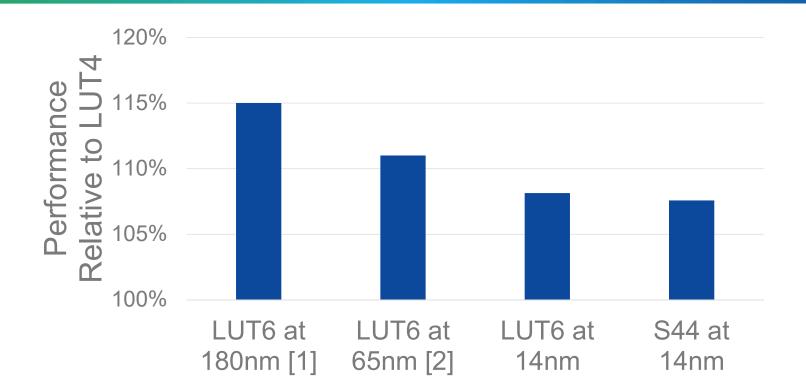
Motivation-2: LUT Structure Synthesis

- A recent synthesis and mapping algorithm showed LUT structures can reduce logic depth as effectively as LUT6
 - S44 cell can be seen as an incomplete LUT7 cell
 - Can also be fractured into two independent LUT4s
- Previous study limited to mapping
- We study the impact of S44 thru the whole flow

3

Motivation-3: Modern Industrial Designs Differ

- Previous work used simple logic designs
 - MCNC-20
- Modern designs have carry chains, IP blocks
 - These diminish the benefit of big LUTs
- We study modern industrial designs


© 2018 Microsemi Corporation. Company Proprietary

This Work

- Created a complete flow to study three logic cell options: LUT4, S44, and LUT6
 - At 14nm node
 - With latest synthesis/mapping algorithms from ABC
 - Using both MCNC-20 and modern industrial designs
 - Cluster-based architecture
 - Place & route based on Microsemi's Libero SoC Design Suite

Results: MCNC-20 Designs

[1] E. Ahmed and J. Rose, The effect of LUT and cluster size on deep-submicron FPGA performance and density, *IEEE Trans. on VLSI*, vol. 12, pp. 288-298, 2004.
[2] G. Zgheib, Leading the blind: automated transistor-level modeling for FPGA architects, Ph.D Thesis, EPFL, 2017.

© 2018 Microsemi Corporation. Company Proprietary

Power Matters.[™]

6

Results: Modern Industrial Designs

	LUT4	S44	LUT6	Fracturable LUT6[2]
Performance	100%	103%	103%	<103%
Area[1]	100%	96%	123%	108%

[1] Area is computed as (number of clusters) * (die area per cluster)

[2] Fracturable LUT6 results are according to following paper: (10-15% area saving with 1.6%-12% performance loss) T. Ahmed, P. Kundarewich, J. Anderson, Packing techniques for Virtex-5 FPGAs, *ACM TRETS*, vol. 2, No. 3, Article 18, 2009.

© 2018 Microsemi Corporation. Company Proprietary

Power Matters.TM 7

Conclusion

The combined effect of technology scaling, S44 mapping, and use of modern industrial designs allow LUT4s to approach the performance of LUT6s while still retaining their area advantage

© 2018 Microsemi Corporation. Company Proprietary