FPGA2018 @Monterey

A Lightweight YOLOv2: A Binarized CNN with a Parallel Support Vector Regression for an FPGA Hiroki Nakahara, Haruyoshi Yonekawa, Tomoya Fujii, Shimpei Sato

Tokyo Institute of Technology, Japan

Outline

- Background
 - Convolutional Neural Network (CNN)
- Mixed-precision CNN for a Lightweight YOLOv2
 - Binary precision CNN
 - Half precision support vector regression (SVR)
- FPGA Implementation
- Experimental Results
- Conclusion

Deep Learning is Everywhere

Convolutional Neural Network (CNN)

- Convolutional + Fully connected + Pooling
- State-of-the-art performance in an image recognition task
- Widely applicable

Source: https://www.mathworks.com/discovery/convolutional-neural-network.html

Image Recognition Tasks

Easy

- Classification
 - Answer "category" of the object in an image

Baby (44%) Son (23%) Daughter (33%)

- Object Detection
 - Classification
 + localization

Hard

Applications

• Robotics, autonomous driving, security, drones...

Demo

Available at https://www.youtube.com/watch?v=_iMboyu8iWc

Requirements in Embedded System

Embedded

Many classes (1000s)	Few classes (<10)
Large workloads	Frame rates (15-30 FPS)
High efficiency	Low cost & low power
(Performance/W)	(1W-5W)

Server form factor

Custom form factor

J. Freeman (Intel), "FPGA Acceleration in the era of high level design", HEART2017 8

Deep Learning Inference Device

- Flexibility: R&D costs for keeping on evolving algorithms
- Power performance efficiency
- FPGA has flexibility&better performance

9

Outline

- Background
 - Convolutional Neural Network (CNN)
- Mixed-precision CNN for a Lightweight YOLOv2
 - Binary precision CNN
 - Half precision support vector regression (SVR)
- FPGA Implementation
- Experimental Results
- Conclusion

Object Detection Problem

- Detecting and classifying multiple objects at the same time
- Evaluation criteria (from Pascal VOC):

YOLOv2 (You Only Look Once version 2)

- Single CNN (One-shot) object detector
 - Both a classification and a BBox estimation for each grid

J. Redmon and A. Farhadi, "YOLO9000: Better, Faster, Stronger," arXiv preprint arXiv:1612.08242, 2016.

2D Convolutional Operation

Computational intensive part of the YOLOv2

M. Courbariaux, I. Hubara, D. Soudry, R.E.Yaniv, Y. Bengio, "Binarized neural networks: Training deep neural networks with weights and activations constrained to +1 or -1," *Computer Research Repository (CoRR)*, Mar., 14 2016, http://arxiv.org/pdf/1602.02830v3.pdf

Improvements by Binarization

Binary Precision → **On-chip Memory**

Near Memory Realization by Binarization

- High bandwidth (Left)
- Less power consumption (Right)

J. Dean, "Numbers everyone should know" Source: https://gist.github.com/2841832 E. Joel et al., "Tutorial on Hardware Architectures for Deep Neural Networks," MICRO-49, 2016.

Typical CNN for Classification

Hypothesis

Does binarized feature map has a location? → Yes

18

Problem

- Low precision NN is hard to regress a function
- Example: sin(x) regression using a NN (3-layers)

Proposed YOLOv2

- Feature extraction layer: Binary precision
- Localization and classification layer: Half precision

Support Vector Regression (SVR)

- Regression version of the Support Vector Machine (SVM)^{*1}
- Passive aggressive (On-line) training is supported^{*2}
- Model decompression (sparse like) can be applied^{*3}

$$y = \sum_{i=1}^{n} \langle w, x_i \rangle + b$$

w: weight, x_i : *i*-th input, and b: bias.

*1 H. Drucker, C. J. C. Burges, L. Kaufman, A. J. Smola and V. N. Vapnik, "Support Vector Regression Machines," *Neural Information Processing Systems*, No. 9, *NIPS* 1996, pp. 155-161, 1997.

*2 M. Martin, "On-Line Support Vector Machine Regression," *ECML*, pp.282-294, 2002.

*3 T. Downs, K. E. Gates and A. Masters, "Exact simplication of support vector solutions," *Journal of Machine Learning Research*, Vol. 2, 2001, pp. 293-297.

Outline

- Background
 - Convolutional Neural Network (CNN)
- Mixed-precision CNN for a Lightweight YOLOv2
 - Binary precision CNN
 - Half precision support vector regression (SVR)
- FPGA Implementation
- Experimental Results
- Conclusion

Pipelined Conv2D Circuit

B. Bosi, G. Bois and Y. Savaria, "Reconfigurable pipelined 2-D convolvers for fast digital signal processing," *IEEE Trans.* on Very Large Scale Integration (VLSI) Systems, Vol. 7, No. 3, pp. 299-308, 1999.

Parallel Binarized CNN Circuit

Parallel SVR Circuit

Overall Architecture

Outline

- Background
 - Convolutional Neural Network (CNN)
- Mixed-precision CNN for a Lightweight YOLOv2
 - Binary precision CNN
 - Half precision support vector regression (SVR)
- FPGA Implementation
- Experimental Results
- Conclusion

Training Result

Environment

- CNN: Proposed YOLOv2
 - Binarized Darknet19+SVR
- Dataset: Pascal VOC2007
 - 21 class, 224x224 image size
- Framework
 - Binary precision CNN: GUINNES^{*1}
 - Half precision SVR: Pegasos^{*2}
- Accuracy (mAP)
 - 67.6%

Pre	oject Setup			3. Trai	ining						
Project Name LeNet5			Training Data Load image			e.pkl					
	SAVE	LO	AD	Trai	ning Label	Load	labe	el.pkl			_
CN	IN Specificaio	n		Nur	nber of tran	ing 10					_
Ту	pe LeNet5	‡ LOAD	CONFIG	Opt	imizer	۲	SGD		🔿 Adam	1	
	Туре	In #Fmaps	Out #Fn		Use GPU						
1	Conv(Int) ‡	1	64	Trai	ning Proces	s View					
2	Conv(Bin) ‡	64	64		100					Train	
3	Conv(Bin) 🛟	64	64	6	80				_	Test	
4	Ave Pool 🛟	64	64	Rate[9	60						
5	Dense 🛟	64	10	Error F	40						
				ш	20						
					0	2	4	6	8	10	
					Start Training				ng		
				4.FPG	A Implemer	tation					
				FPGA Board			zed				
				Clo	ck Frequenc	y (MHz)		100.0			
-		1				Ge	nerate	Bitstream			

*1 H. Nakahara et. al, "A demonstration of the GUINNESS: A GUI based neural NEtwork SyntheSizer for an FPGA," FPL, 2017, page 1. https://github.com/HirokiNakahara/GUINNESS *2 S. S. Shwartz et. al, "Pegasos: primal estimated sub-gradient solver for SVM," Mathematical Programming, Vol . 127, No. 1, 2011, pp. 3-30. https://github.com/ejlb/pegasos

Implementation Setup

- Board: Xilinx Inc. Zynq UltraScale+ MPSoC zcu102 evaluation board
 - Zynq UltraScale+ MPSoC FPGA
- Design tool: SDSoC 2017.4
 - Timing constraint: 299.97MHz

Module	#LUTs	#FFs	#18Kb BRAMs	#DSP48Es
Binary CNN	108,138	358,868	1680	135
(2D bin. Conv.)	(103,924)	(313,839)	(0)	(0)
Parallel SVR	27,243	11,431	26	242
Total	135,381	370,299	1,706	377
(%)	(49.3)	(67.5)	(93.5)	(14.9)

Comparison

Xilinx ZCU102

Platform	Embedded CPU	Embedded GPU	FPGA
Device	Quad-core ARM Cortex-A57	256-core Pascal GPU	Zynq UltraScale+ MPSoC
Clock Freq. [GHz]	1.9	1.3	0.3
Memory	32 GB eMMC Flash	8GB LPDDR4	32.1 Mb BRAM
Time [msec] (FPS) [sec ⁻¹]	4210.0 (0.23)	715.9 (1.48*)	24.5 (40.81)
Dynamic Power [W]	4.0	7.0	4.5
Efficiency [FPS/W]	0.057	0.211	9.060

* Chainer (version 1.24.0), source code: https://github.com/leetenki/YOLOv2 30

Conclusion

- Lightweight YOLOv2 for a real-time object detector
 - Mixed-precision CNN
 - Binary precision CNN: Feature extraction
 - Half precision SVR: Classification and localization
- FPGA Implementation
 - Outperforms an embedded GPU and a CPU
- Future Work: Applied to CNN-based applications
 - Single-shot object detector (SSD, PVANet)
 - Semantic segmentation (FCN, U-Net)
 - Pose estimation (OpenPose)
 - CNN SLAM

Thank you!

Contact: Hiroki Nakahara, Tokyo Institute of Technology nakahara@ict.e.titech.ac.jp