
CausaLearn: Automated Framework for Scalable 
Streaming-based Causal Bayesian Learning using FPGAs

Bita Rouhani, Mohammad Ghasemzadeh, and Farinaz Koushanfar
ECE Department, UC San Diego

February 2018 



Speech Recognition 

Weather Forecasting Health care

Time-series data with causality structure

Financial Data Analysis

Geological Data Analysis Activity Recognition

2



Markov Chain Monte Carlo (MCMC)

Prior work with i.i.d. assumption CausaLearn

[1] Mingas et al., "Population-based MCMC on multi-core CPUs, GPUs and FPGAs", IEEE Transactions on Computers, 2016
[2] N. B. Asadi, et al., “Reconfigurable Computing for Learning Bayesian Networks,” Field programmable gate arrays (FPGA), 2008.

3

• MCMC is a commonly used method for probabilistic analysis of time-series data

• Algorithmic solutions to effectively capture causality structure of data involve complex 
data flows such as gradient computation (e.g., Hamiltonian MCMC) 

• Existing MCMC hardware-accelerated tools are either:
• Developed based on the assumption that data samples are independently and identically
distributed to simplify the hardware implementation complexity (e.g., [1]), or

• Developed for analyzing discrete random variables and are inapplicable to dynamic
continuous variables (e.g., [2])



➢ Proposing CausaLearn, the first end-to-end framework that enables real-time
multi-dimensional PDF approximation for time-series data with causal structure*

➢ Providing support for streaming settings in which the underlying PDF should be
adaptively updated as data evolves over time

➢ Devising the first scalable realization of Hamiltonian
Markov Chain Monte Carlo to analyze continuous random
variables on FPGA platforms

➢ Developing an automated customization tool to optimize
the underlying performance by simultaneously considering
data, algorithm, and hardware characteristics

➢ Designing an accompanying API to ensure CausaLearn ease of use on various FPGAs

* B. Rouhani, M. Ghasemzadeh, and F. Koushanfar, U.S. Patent No. 62452880, 2017

Contributions

Automation

4



What is CausaLearn?

Global flow

5



Global flow

6

Automation



Hamiltonian MCMC

Automation

7



Objective function

• Time-series data can be represented as a pair of (𝒙, 𝒚) values, where: 
• 𝒙 = {𝑥𝑖 = [𝑥𝑖1, … , 𝑥𝑖𝑑]}𝑖=1

𝑛 are the input data features  

• d is the feature space size 

• n specifies the number of data measurements that grows over time

• 𝒚 = [𝑦1, … , 𝑦𝑛] are the observation values

• Each observation 𝑦𝑖 can be either continuous as in regression tasks, or discrete as in 
classification applications

8

Automation



Objective function

• The observations are conditionally independent

• 𝑝 𝒚 𝒇, 𝝈𝒏
𝟐 ~∏𝑖=1

𝑁 𝑝 𝑦𝑖|𝑓𝑖 , 𝜎𝑛
2 , where 𝒇 = [𝑓 (𝑥1), … , 𝑓 (𝑥𝑛)]

• Note that the observations themselves are not independent 

• e.g., p(y) ≠ ∏𝑖=1
𝑁 𝑝 𝑦𝑖

𝑦𝑖 = 𝑓 𝑥𝑖 + 𝜀𝑖
𝜀𝑖 ~𝒩(0, 𝜎𝑛

2)

𝑓(𝒙)|𝛾 ∼ 𝒢𝒫(𝑚(𝒙), 𝐾(𝑥, 𝑥 ′|𝛾 ))

• The latent function f(.) is defined as a Gaussian Processes (GP)
• GP is fully defined by its second order statistics

𝐾𝑖𝑗 𝒙 = 𝜎𝑘
2 𝑒

−1
2 (𝑥𝑖 − 𝑥𝑗)

𝑇∑−1 (𝑥𝑖 − 𝑥𝑗)

∑ = 𝑑𝑖𝑎𝑔[ℒ1
2, … , ℒ𝑑

2]

We further assume a log-uniform prior for the variance 

parameter 𝜎𝑘
2 and a multivariate Gaussian prior for the 

length-scale parameters

9

Automation



Hamiltonian MCMC

• To effectively capture the causality structure of the data, we need to
fine-tune the underlying hyper-parameters inline with the data arrival

• Exploring the GP parameter space

• Random-walk

• Simple dataflow for hardware implementation

• High cost of unnecessary space exploration in high-dimensional settings

• Gradient-based Hamiltonian dynamics

• Efficient sampling by moving towards the gradient of the model

• Complex dataflow for hardware implementation

10

Automation



Hamiltonian MCMC block diagram

• Three main steps:
I. Computing gradient of posterior distribution

II. Updating auxiliary momentum variable

III. Drawing new hyper parameter samples

11

Automation



Hardware implementation
Automation

12



Hardware accelerator architecture

• Memory management

• Dot-product
• Tree-based reduction

• Matrix inversion

13

Automation



Memory management

• CausaLearn facilitates matrix-based computations by:
• Enabling concurrent access to multiple elements within a matrix   

• Preventing diverse/complex memory access pattern (universal indexing)

bs

14

Automation



Tree-based reduction

• Matrix-based computations requires frequent dot product operations:

𝑐 += 𝐴[𝑖] × 𝐵[𝑖]

Tree-based approachConventional sequential approach

15

Automation



Tree-base adder

• The number of floating-point adders is equivalent to the unrolling factor 𝛼

𝒃𝒔
𝜶

× 𝐥𝐨𝐠𝟐 𝜶 +
𝒃𝒔
𝜶

16

Automation



Matrix inversion

• Computing the inverse of the covariance kernel 𝑲 is a key step in finding 
the gradient direction in each iteration

• Let us consider a linear equation as the following:

𝑉 = 𝐾−1𝐵

𝑉 = (𝑄𝑅)−1𝐵

𝑉 = 𝑅−1𝑄𝑇 𝐵

𝑅𝑉 = 𝑄𝑇𝐵

QR decomposition

}
C

}
17

Automation



Matrix inversion

• Computing the inverse of the covariance kernel 𝑲 is a key step in finding 
the gradient direction in each iteration

• Let us consider a linear equation as the following:

𝑅𝑏𝑠×𝑏𝑠𝑉𝑏𝑠×1 = 𝐶𝑏𝑠×1

18

Automation



Matrix inversion architecture

• Concurrent computation of both sides of equation 𝑅𝑉 = 𝑄𝑇𝐵
• Cyclic interleaving of all matrices 
• Universal memory access signals
• Data parallelism to maximize throughput

19

Automation



Data customization
Automation

20



Batch optimization

• The input data evolves over time
• Breaking down the input data into batches that fit the memory budget

• The underlying batch size is a design parameter
• Trade-off between system throughput and MCMC mixing time

bs
21

Automation



Global flow

22

Automation



Automation
Automation

23



Design planner

• Automated design space exploration

• Batch size 𝒃𝒔

• Karush-Kuhn-Tucker (KKT) optimization

minimize
𝑏𝑠

(𝑀𝐶 𝑚𝑖𝑥𝑖𝑛𝑔 𝑡𝑖𝑚𝑒) 𝑠. 𝑡. 𝑇𝑐𝑜𝑚𝑚 + 𝑇𝑐𝑜𝑚𝑝 ≤ 𝑇𝑢𝑠𝑒𝑟

𝑀𝐶𝑎𝑢𝑠𝑎𝐿𝑒𝑎𝑟𝑛 ≤ 𝑀𝑢𝑠𝑒𝑟

Automation

24



Unroll factor (α)

Design planner

• Automated design space exploration

• Batch size 𝒃𝒔

• Karush-Kuhn-Tucker (KKT) optimization

• Unroll factor 𝜶

• Avoid excessive partitioning to registers

Automation

25



Design planner

• Automated design space exploration

• Batch size 𝒃𝒔

• Karush-Kuhn-Tucker (KKT) optimization

• Unroll factor 𝜶

• Avoid excessive partitioning to registers

• Slice factor 𝒑

• Maximizing throughput per resource unit
Unroll factor (α)

Sl
ic

e
 f

ac
to

r 
(p

)

Automation

26



Design integrator

• Customizing the H_MCMC template with in accordance to the execution schedule

• Adding memory interface to communicate with the host CPU
• Leveraging PCI express IP[1] 

[1] Xillybus FPGA IP core for easy DMA, xillybus.com

Automation

27

xillybus.com


CausaLearn evaluation

28



Example data applications evaluated so far ….

• Dow-Jones index stock data
Task: data regression

Predicting the percentage of return for each of the 30 involving stocks
Data: daily stock data for 30 companies over 6 month 

• Activity recognition 
Task: data classification

Recognition of 12 different daily activities
Data: recorded sensor body motion and vital signs at a sampling rate of 50Hz

• Synthetic time-variant data 
Task: data regression
Data: 2-D regression data for visualization purposes

29



Example platforms evaluated so far ….

Platform1:  Virtex VC707
On-chip memory: 4.6 MB

Eigen Library

• Hardware evaluation platforms

Platform1:  Zynq ZC702
On-chip memory: 0.6 MB

Platform1:  Virtex VCU108
On-chip memory: 7.6 MB

• Software evaluation platform

30

Processor:  2.4GHz Intel core i5-6300U
Memory: 8 GB



Resource utilization

• Automated customization to maximally exploits on-chip memory
• For a given dataset, each platform has its own batch size, unroll factor, and slice factor

31



Runtime and energy efficiency

# of data samples* SW Runtime per 
iteration C++

CausaLearn Runtime 
Improvement Virtex7

CausaLearn Energy
Improvement Viretx7

256 113.01 sec 2.4x 4.1x

512 902.98 sec 9.6x 16.5x

1024 143.35 min 42.7x 65.9x

2048 33.52 hr 320.2x 398.9x

• CausaLearn achieves up to 320x runtime and 400x energy improvement compared 
to a highly-optimized software solution running on a 2.4GHz Intel core i5-6300U

* |θ| = 10 for this experiment

32



Practical design experiments

• CausaLearn posterior distribution samples closely follow the optimal 
Maximum A Posterior (MAP) solution

argmax
𝜃

ln 𝑝 𝑦 𝑥, 𝜃 + ln(𝑝(𝜃))

• Example posterior distribution samples for observation noise variance 

33



➢ Proposing CausaLearn, the first end-to-end framework that enables real-time
multi-dimensional PDF approximation using Hamiltonian MCMC*

➢ Providing support for streaming data

➢ Developing an automated tool to optimize the physical performance by
considering data, algorithm, and hardware characteristics

➢ Designing an accompanying API to ensure CausaLearn ease of use on various FPGAs

* B. Rouhani, M. Ghasemzadeh, and F. Koushanfar, U.S. Patent No. 62452880, 2017

Summary

Automation

34


