

CausaLearn: Automated Framework for Scalable Streaming-based Causal Bayesian Learning using FPGAs

Bita Rouhani, Mohammad Ghasemzadeh, and Farinaz Koushanfar ECE Department, UC San Diego February 2018

Time-series data with causality structure

Markov Chain Monte Carlo (MCMC)

- MCMC is a commonly used method for probabilistic analysis of time-series data •
- Algorithmic solutions to effectively capture **causality** structure of data involve **complex** • data flows such as gradient computation (e.g., Hamiltonian MCMC)
- Existing MCMC hardware-accelerated tools are either: •
 - Developed based on the assumption that data samples are *independently and identically distributed* to simplify the hardware implementation complexity ^(e.g., [1]), or

Prior work with i.i.d. assumption

CausaLearn

Developed for analyzing *discrete random variables* and are inapplicable to dynamic • continuous variables (e.g., [2])

[1] Mingas et al., "Population-based MCMC on multi-core CPUs, GPUs and FPGAs", IEEE Transactions on Computers, 2016 [2] N. B. Asadi, et al., "Reconfigurable Computing for Learning Bayesian Networks," Field programmable gate arrays (FPGA), 2008.

* B. Rouhani, M. Ghasemzadeh, and F. Koushanfar, U.S. Patent No. 62452880, 2017

Contributions

- Proposing CausaLearn, the first end-to-end framework that enables real-time multi-dimensional PDF approximation for time-series data with causal structure*
 - Devising the first scalable realization of Hamiltonian Markov Chain Monte Carlo to analyze continuous random variables on FPGA platforms
 - Developing an automated customization tool to optimize the underlying performance by simultaneously considering data, algorithm, and hardware characteristics
- Providing support for streaming settings in which the underlying PDF should be adaptively updated as data evolves over time
- > Designing an accompanying API to ensure CausaLearn ease of use on various FPGAs

4

What is CausaLearn?

Global flow

Global flow

Hamiltonian MCMC

Objective function

- Time-series data can be represented as a pair of (x, y) values, where:
 - $\mathbf{x} = \{x_i = [x_{i1}, \dots, x_{id}]\}_{i=1}^n$ are the input **data features**
 - *d* is the feature space size
 - *n* specifies the number of data measurements that grows over time

• $y = [y_1, ..., y_n]$ are the observation values

• Each observation y_i can be either continuous as in regression tasks, or discrete as in classification applications

Objective function

Hamiltonian MCMC

- Automation
- To effectively capture the causality structure of the data, we need to <u>fine-tune</u> the underlying hyper-parameters *inline with the data arrival*
- Exploring the GP parameter space
 - <u>Random-walk</u>
 - Simple dataflow for hardware implementation
 - High cost of unnecessary space exploration in high-dimensional settings
 - Gradient-based Hamiltonian dynamics
 - Efficient sampling by moving towards the gradient of the model
 - Complex dataflow for hardware implementation

Hamiltonian MCMC block diagram

- Three main steps:
 - I. Computing gradient of posterior distribution
 - II. Updating auxiliary momentum variable
 - III. Drawing new hyper parameter samples

Hardware implementation

Hardware accelerator architecture

- Memory management
- Dot-product
 - Tree-based reduction
- Matrix inversion

Memory management

Automation

- CausaLearn facilitates matrix-based computations by:
 - Enabling concurrent access to multiple elements within a matrix
 - Preventing diverse/complex memory access pattern (<u>universal indexing</u>)

Tree-based reduction

• Matrix-based computations requires frequent dot product operations:

 $c += A[i] \times B[i]$

Conventional sequential approach

Tree-based approach

Tree-base adder

• The number of floating-point adders is equivalent to the unrolling factor α

Matrix inversion

- Computing the inverse of the covariance kernel *K* is a key step in finding the gradient direction in each iteration
- Let us consider a linear equation as the following:

$$V = K^{-1}B$$

$$V = (QR)^{-1}B$$

$$V = R^{-1}Q^{T}B$$

$$RV = Q^{T}B$$

$$C$$

$$QR decomposition$$

$$V = R^{-1}Q^{T}B$$

Matrix inversion

- Computing the inverse of the covariance kernel *K* is a key step in finding the gradient direction in each iteration
- Let us consider a linear equation as the following:

$$R_{bs \times bs} V_{bs \times 1} = C_{bs \times 1}$$

Matrix inversion architecture

- Concurrent computation of both sides of equation $RV = Q^T B$
 - Cyclic interleaving of all matrices
 - Universal memory access signals
 - Data parallelism to maximize throughput

Data customization

Batch optimization

- The input data evolves over time
 - Breaking down the input data into batches that fit the memory budget
- The underlying batch size is a design parameter
 - Trade-off between system throughput and MCMC mixing time

Global flow

Automation

Design planner

- Automated design space exploration
 - Batch size *b*_s
 - Karush-Kuhn-Tucker (KKT) optimization

Design planner

- Automated design space exploration
 - Batch size b_s
 - Karush-Kuhn-Tucker (KKT) optimization
 - Unroll factor α
 - Avoid excessive partitioning to registers

Unroll factor (α)

Design planner

- Automated design space exploration
 - Batch size b_s
 - Karush-Kuhn-Tucker (KKT) optimization
 - Unroll factor α
 - Avoid excessive partitioning to registers
 - Slice factor p
 - Maximizing throughput per resource unit

Design integrator

- Customizing the H_MCMC template with in accordance to the execution schedule
- Adding memory interface to communicate with the host CPU
 - Leveraging PCI express IP^[1]

Automatior

CausaLearn evaluation

Example data applications evaluated so far

Dow-Jones index stock data

Task: data regression

Predicting the percentage of return for each of the 30 involving stocks <u>Data</u>: daily stock data for 30 companies over 6 month

Activity recognition

Task: data classification

Recognition of 12 different daily activities

Data: recorded sensor body motion and vital signs at a sampling rate of 50Hz

• Synthetic time-variant data

<u>Task</u>: data regression

Data: 2-D regression data for visualization purposes

Example platforms evaluated so far

• Hardware evaluation platforms

Platform1: Virtex VC707 On-chip memory: 4.6 MB

Platform1: Zynq ZC702 On-chip memory: 0.6 MB

Platform1: Virtex VCU108 On-chip memory: 7.6 MB

• Software evaluation platform

Processor: 2.4GHz Intel core i5-6300U **Memory:** 8 GB

Eigen Library

Resource utilization

- Automated customization to maximally exploits on-chip memory
 - For a given dataset, each platform has its own batch size, unroll factor, and slice factor

Runtime and energy efficiency

• CausaLearn achieves up to **320x** runtime and **400x** energy improvement compared to a highly-optimized software solution running on a 2.4GHz Intel core i5-6300U

SW Runtime per iteration C++	CausaLearn Runtime Improvement Virtex7	CausaLearn Energy Improvement Viretx7
113.01 sec	2.4x	4.1x
902.98 sec	9.6x	16.5x
143.35 min	42.7x	65.9x
33.52 hr	320.2x	398.9x
	SW Runtime per iteration C++ 113.01 sec 902.98 sec 143.35 min 33.52 hr	SW Runtime per iteration C++CausaLearn Runtime Improvement Virtex7113.01 sec2.4x902.98 sec9.6x143.35 min42.7x33.52 hr320.2x

* $|\theta| = 10$ for this experiment

Practical design experiments

• CausaLearn posterior distribution samples closely follow the optimal Maximum A Posterior (MAP) solution

$$\underset{\theta}{\operatorname{argmax}} \ln(p(y|x,\theta)) + \ln(p(\theta))$$

• Example posterior distribution samples for observation noise variance

Summary

- Proposing CausaLearn, the first end-to-end framework that enables real-time multi-dimensional PDF approximation using Hamiltonian MCMC*
- Developing an automated tool to optimize the physical performance by considering data, algorithm, and hardware characteristics

- > Designing an **accompanying API** to ensure CausaLearn ease of use on various FPGAs
- Providing support for streaming data

* B. Rouhani, M. Ghasemzadeh, and F. Koushanfar, U.S. Patent No. 62452880, 2017