Causalearn: Automated Framework for Scalable
Streaming-based Causal Bayesian Learning using FPGAs

Bita Rouhani, Mohammad Ghasemzadeh, and Farinaz Koushanfar
ECE Department, UC San Diego
February 2018

Time-series data with causality structure

Financial Data Analysis | Weather Forecasting Health care

Activity Recognition

- R

-4. 'I ——p o

Markov Chain Monte Carlo (MCMC)

* MCMC is a commonly used method for probabilistic analysis of time-series data

* Algorithmic solutions to effectively capture causality structure of data involve complex
data flows such as gradient computation (e.g., Hamiltonian MCMC)
e Existing MCMC hardware-accelerated tools are either:

* Developed based on the assumption that data samples are independently and identically
distributed to simplify the hardware implementation complexity (€& 1) or

Prior work with i.i.d. assumption Causalearn

* Developed for analyzing discrete random variables and are inapplicable to dynamic

continuous variables (e-8-[2])

[1] Mingas et al., "Population-based MCMC on multi-core CPUs, GPUs and FPGAs", IEEE Transactions on Computers, 2016
[2] N. B. Asadi, et al., “Reconfigurable Computing for Learning Bayesian Networks,” Field programmable gate arrays (FPGA), 2008.

Contributions

» Proposing Causalearn, the first end-to-end framework that enables real-time
multi-dimensional PDF approximation for time-series data with causal structure*

» Devising the first scalable realization of Hamiltonian
Markov Chain Monte Carlo to analyze continuous random
variables on FPGA platforms

Automation

» Developing an automated customization tool to optimize
the underlying performance by simultaneously considering v
data, algorithm, and hardware characteristics

» Providing support for streaming settings in which the underlying PDF should be
adaptively updated as data evolves over time

» Designing an accompanying API to ensure Causalearn ease of use on various FPGAs

* B. Rouhani, M. Ghasemzadeh, and F. Koushanfar, U.S. Patent No. 62452880, 2017

What i1s CausalLearn?
Global flow

G I 0 b a I fI OW Automation

4

Physical b Core Memor b
ysi Hamiltonian MCMC y
Profiling Template Interface
* Execution * +
. Schedule
. High-Level Design _ Synthesizable
—> Data I Design Integrator —»| Accelerator
Description Planner
- P Resource
Allocation
m Updated Hyper-Parameters (9%))
N
—
- :
—»1 FPGASs 7 User-_Defmed | Decision
\/\ | : | . Learning Task Outputs
\/\ * B Hyper-Parameters Pruning
N~~~
v\ [Data Stream Data Inference (SW)

Hamiltonian MCMC

Objective function

* Time-series data can be represented as a pair of (x, y) values, where:
e x = {x; = [Xj1, ..., Xiq]};=1 are the input data features

e disthe feature space size

* nspecifies the number of data measurements that grows over time

*y = |y1,..., Yn] are the observation values

* Each observation y; can be either continuous as in regression tasks, or discrete as in
classification applications

Objective function

* The observations are conditionally independent

 p(¥|f,07)~ 1 p(vilfi, 07), where f = [f (x)), .., f (x,)]

|
|
|
I * Note that the observations themselves are not independent
! + eg,ply) # [T pO)

_____________________________::_==“J
_______________________________ |

The latent function f(.) is defined as a Gaussian Processes (GP) :

GP is fully defined by its second order statistics :

|

===t .

_1 We further assume a log-uniform prior for the variance |

K.. _ 2 T(Xi = xj)TZ_l (xi — xj) parameter 0,? and a multivariate Gaussian prior for the :
ij (x) = o e l
.) 9 length-scale parameters |
§=dlag[L1,...,Ld] ——_— e e e e e m e e — e oo o=~

Hamiltonian MCMC ‘

* To effectively capture the causality structure of the data, we need to
fine-tune the underlying hyper-parameters inline with the data arrival

* Exploring the GP parameter space
 Random-walk

* Simple dataflow for hardware implementation

* High cost of unnecessary space exploration in high-dimensional settings
* Gradient-based Hamiltonian dynamics

* Efficient sampling by moving towards the gradient of the model

* Complex dataflow for hardware implementation

Hamiltonian MCMC block diagram

* Three main steps:
|. Computing gradient of posterior distribution

Il. Updating auxiliary momentum variable

Ill. Drawing new hyper parameter samples

Data Stream

PCle
> Interface

555

| .| bata Memory PRNG
¥ Y
Gradient Update
Update Covarience | | Update Auxiliary
Kernel (K) Momentum Hyper-Parameters
Undate i L, dln(p(ylx,@)) Upda‘[e Update (9)
P 90, 06;
FIFO -

Hyper-Parameters
Memory

Hamiltonian MCMC (FPGA)

Hardware implementation

12

Hardware accelerator architecture

* Memory management

* Dot-product
* Tree-based reduction

e Matrix inversion

Memory management

* Causalearn facilitates matrix-based computations by:
* Enabling concurrent access to multiple elements within a matrix
* Preventing diverse/complex memory access pattern (universal indexing)

Unroll Factor (cx)

s Vs | Memory Controller

l

_ | & j
Adﬂ‘f"—r -y + p

—— - Aij'

> A

Yyvyy
MUX

Mem 1

Tree-based reduction
\ " 4

* Matrix-based computations requires frequent dot product operations:

c += Ali] X BJi]

A
A[0] X B[0] =
+
; A[l] X B[1] = \« +
Al2] X B[2] = \
AR R T
A[3] X B[3] = >
B L/ +> ¢
t % _ a
Albs =2]| X |[Blbs-2] =
+
Alb,—1]] X [B[b,—1] =

Conventional sequential approach Tree-based approach

15

Tree-base adder

4

* The number of floating-point adders is equivalent to the unrolling factor «

by b
—| X log, a +
Tree Adder "';1 B "4-‘;0 - — — —Ad::lri-l— 1
MUXO0 +____+__J|
Tuj. Ta-2 —-n? — 41w | l
|

ZDEMUKT___'"'—__ DeMUX

|
|
L —
]
_ — — _l_ — —

|

I

13|jonuo) fowsy

16

Matrix inversion

o

* Computing the inverse of the covariance kernel K is a key step in finding
the gradient direction in each iteration

* Let us consider a linear equation as the following:

V=K1!B \
QR decomposition

V=(QR) B

V=R11"B
L I BN BN BN RV — QTB
Crod|— =
D o @ C

17

Matrix inversion

o

* Computing the inverse of the covariance kernel K is a key step in finding
the gradient direction in each iteration

* Let us consider a linear equation as the following:

Rgo [Ro1 [Roz2 [Ro3 » PE—>

A

]

Ri1 [R12 [R13 » PE—>

'A

Rbsxbstsxl — Cbsxl

]

R22 [Ry3 PE—» &

[

Matrix inversion architecture

4

* Concurrent computation of both sides of equation RV = Q'B
* Cyclic interleaving of all matrices
* Universal memory access signals
e Data parallelism to maximize throughput

Memory Controller

B4 —

B@3)
B2
B

Tree Adder Tree Adder

Data customization

20

Batch optimization (

* The input data evolves over time
* Breaking down the input data into batches that fit the memory budget

* The underlying batch size is a design parameter
* Trade-off between system throughput and MCMC mixing time

FPGA

21

Global flow

4

Physical b Core Memor b
ysi Hamiltonian MCMC y
Profiling Template Interface
* Execution * +
. Schedule
. High-Level Design _ Synthesizable
—> Data I Design Integrator —»| Accelerator
Description Planner
- P Resource
Allocation
m Updated Hyper-Parameters (9%))
N
—
- :
—»1 FPGASs 7 User-_Defmed | Decision
\/\ | : | . Learning Task Outputs
\/\ * B Hyper-Parameters Pruning
N~~~
v\ [Data Stream Data Inference (SW)

22

Automation

23

Design planner

* Automated design space exploration
* Batch size b

e Karush-Kuhn-Tucker (KKT) optimization

24

Design planner

* Automated design space exploration
* Batch size by

e Karush-Kuhn-Tucker (KKT) optimization

 Unroll factor a
Unroll factor (a)

* Avoid excessive partitioning to registers Vi, Vs, |

Design planner

* Automated design space exploration
* Batch size b

e Karush-Kuhn-Tucker (KKT) optimization
* Unroll factor a

* Avoid excessive partitioning to registers
* Slice factor p

Effective Throughput per Resource Unit

0.6
i MaX|m|Z|ng throughput per resource unit 0 =E§p
o LUt
[|BRAM

Q Unroll factor () _
= = 0.4
- Y E
o S i
fd =
® I §0°
0 \ . [l

1 2 4 8 12 16 25
Slice Factor p

26

Design integrator

* Customizing the H_MCMC template with in accordance to the execution schedule

 Adding memory interface to communicate with the host CPU
 Leveraging PCl express IP!1]

PO 2>

EXPRESS
(me——)

A

[1] Xillybus FPGA IP core for easy DMA, xillybus.com 27

xillybus.com

RN LN
. Core
Phygl_cal Hamiltonian MCMC Memory
Profiling Interface
Template
* Execution * *
. Schedule
. High-Level Design X Synthesizable
— Data Design Integrator » Accelerator
Description Planner ceelerato
- escriptio Resource
Allocation
[Updated Hyper-Parameters (¢1))
L»] FPGASs . | | |' | | | User-Defined Decision
V) | " . P | ’ Learning Task Outputs
- yper-Parameters Pruning
VA |
Y\ [Data Stream Data Inference (SW)

Causalearn evaluation

28

Example data applications evaluated so far

* Dow-Jones index stock data Ll
Task: data regression Q
Predicting the percentage of return for each of the 30 involving stocks
Data: daily stock data for 30 companies over 6 month

* Activity recognition B
Task: data classification I
Recognition of 12 different daily activities
Data: recorded sensor body motion and vital signs at a sampling rate of 50Hz

* Synthetic time-variant data
Task: data regression
Data: 2-D regression data for visualization purposes

Example platforms evaluated so far
VIVADO!

 Hardware evaluation platforms HLx Editions

Platform1: Virtex VC707 Platform1: Zynq ZC702 Platform1: Virtex VCU108
On-chip memory: 4.6 MB On-chip memory: 0.6 MB On-chip memory: 7.6 MB
e Software evaluation platform Visual
Studio

Processor: 2.4GHz Intel core i5-6300U
Memory: 8 GB

R—
A CORSAIR"

Eigen Library

i
2 x 4GB DIMMS = 8GB Upgrade [

30

Resource utilization

* Automated customization to maximally exploits on-chip memory
* For a given dataset, each platform has its own batch size, unroll factor, and slice factor

120 -

S I Gradient Updates
110 o B Momentum/Parameter Updates
100 |- N [IPRNG
N [_]PCle Controller/Interface
920 5
o 8ot =
e S 3
c 70 o >
~
._g 60 - e N
3}
© L
N 50 § >
= 9 S B
3}

30 -
20
10

o
—
Vv
VCu108
VCu108

FF LUT BRAM DSP

31

Runtime and energy efficiency

e (Causalearn achieves up to 320x runtime and 400x energy improvement compared
to a highly-optimized software solution running on a 2.4GHz Intel core i5-6300U

of data samples* SW Runtime per Causalearn Runtime Causalearn Energy
iteration C++ Improvement Virtex7 Improvement Viretx7

113.01 sec 2.4x 4.1x
512 902.98 sec 9.6x 16.5x
1024 143.35 min 42.7x 65.9x
2048 33.52 hr 320.2x 398.9x

* 10| = 10 for this experiment

32

Practical desigh experiments

e Causalearn posterior distribution samples closely follow the optimal
Maximum A Posterior (MAP) solution

arggnax In(p(y|x,0)) + In(p(8))

* Example posterior distribution samples for observation noise variance

50 ~ Stock Data 0 o Activity Recognition Data ,, 30>y nthetic Time-Variant Data
@~ [H_MCMC samples Q HH_MCMC samples @~ JH_MCMC samples
240)(VIAP estimate - %1 5)GVIAP estimate T g. X\AAP estimate B
S ©] © 20
30 " n
020 o 10
) _ _
e Ll
=] S
20 X 20 i 2, H
0 0.5 1 1.5 2 0.4 0.6 0.8 1 0 0.1 0.2

Observation Noise Observation Noise Observation Noise

Summary

» Proposing Causalearn, the first end-to-end framework that enables real-time
multi-dimensional PDF approximation using Hamiltonian MCMC*

» Developing an automated tool to optimize the physical performance by
considering data, algorithm, and hardware characteristics

Automation

o

» Designing an accompanying API to ensure Causalearn ease of use on various FPGAs

» Providing support for streaming data

* B. Rouhani, M. Ghasemzadeh, and F. Koushanfar, U.S. Patent No. 62452880, 2017 34

