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Time-series data with causality structure

Financial Data Analysis | Weather Forecasting Health care
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Markov Chain Monte Carlo (MCMC)

* MCMC is a commonly used method for probabilistic analysis of time-series data

* Algorithmic solutions to effectively capture causality structure of data involve complex
data flows such as gradient computation (e.g., Hamiltonian MCMC)
e Existing MCMC hardware-accelerated tools are either:

* Developed based on the assumption that data samples are independently and identically
distributed to simplify the hardware implementation complexity (€& 1) or

Prior work with i.i.d. assumption Causalearn

* Developed for analyzing discrete random variables and are inapplicable to dynamic

continuous variables (e-8-[2])

[1] Mingas et al., "Population-based MCMC on multi-core CPUs, GPUs and FPGAs", IEEE Transactions on Computers, 2016
[2] N. B. Asadi, et al., “Reconfigurable Computing for Learning Bayesian Networks,” Field programmable gate arrays (FPGA), 2008.



Contributions

» Proposing Causalearn, the first end-to-end framework that enables real-time
multi-dimensional PDF approximation for time-series data with causal structure*

» Devising the first scalable realization of Hamiltonian
Markov Chain Monte Carlo to analyze continuous random
variables on FPGA platforms

Automation

» Developing an automated customization tool to optimize
the underlying performance by simultaneously considering v
data, algorithm, and hardware characteristics

» Providing support for streaming settings in which the underlying PDF should be
adaptively updated as data evolves over time

» Designing an accompanying API to ensure Causalearn ease of use on various FPGAs

* B. Rouhani, M. Ghasemzadeh, and F. Koushanfar, U.S. Patent No. 62452880, 2017



What i1s CausalLearn?
Global flow
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Hamiltonian MCMC




Objective function

* Time-series data can be represented as a pair of (x, y) values, where:
e x = {x; = [Xj1, ..., Xiq]};=1 are the input data features

e disthe feature space size

* nspecifies the number of data measurements that grows over time

*y = |y1,..., Yn] are the observation values

* Each observation y; can be either continuous as in regression tasks, or discrete as in
classification applications



Objective function

* The observations are conditionally independent

 p(¥|f,07)~ 1 p(vilfi, 07), where f = [f (x)), .., f (x,)]
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The latent function f(.) is defined as a Gaussian Processes (GP) :

GP is fully defined by its second order statistics :
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Hamiltonian MCMC ‘

* To effectively capture the causality structure of the data, we need to
fine-tune the underlying hyper-parameters inline with the data arrival

* Exploring the GP parameter space
 Random-walk

* Simple dataflow for hardware implementation

* High cost of unnecessary space exploration in high-dimensional settings
* Gradient-based Hamiltonian dynamics

* Efficient sampling by moving towards the gradient of the model

* Complex dataflow for hardware implementation




Hamiltonian MCMC block diagram

* Three main steps:
|.  Computing gradient of posterior distribution

Il. Updating auxiliary momentum variable

Ill. Drawing new hyper parameter samples
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Hardware implementation
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Hardware accelerator architecture

* Memory management

* Dot-product
* Tree-based reduction

e Matrix inversion




Memory management

* Causalearn facilitates matrix-based computations by:
* Enabling concurrent access to multiple elements within a matrix
* Preventing diverse/complex memory access pattern (universal indexing)
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Tree-based reduction
\ " 4

* Matrix-based computations requires frequent dot product operations:

c += Ali] X BJi]

A
A[0] X B[0] =
+
; A[l] X B[1] = \« +
Al2] X B[2] = \
AR R T
A[3] X B[3] = >
B L/ +> ¢
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Albs =2]| X |[Blbs-2] =
+
Alb,—1]] X [B[b,—1] =

Conventional sequential approach Tree-based approach
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Tree-base adder
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* The number of floating-point adders is equivalent to the unrolling factor «
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Matrix inversion

o

* Computing the inverse of the covariance kernel K is a key step in finding
the gradient direction in each iteration

* Let us consider a linear equation as the following:

V=K1!B \
QR decomposition

V=(QR) B

V=R11"B
L I BN BN BN RV — QTB
Crod|— =
D o @ C
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Matrix inversion

o

* Computing the inverse of the covariance kernel K is a key step in finding
the gradient direction in each iteration

* Let us consider a linear equation as the following:
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Matrix inversion architecture
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* Concurrent computation of both sides of equation RV = Q'B
* Cyclic interleaving of all matrices
* Universal memory access signals
e Data parallelism to maximize throughput
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Data customization
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Batch optimization (

* The input data evolves over time
* Breaking down the input data into batches that fit the memory budget

* The underlying batch size is a design parameter
* Trade-off between system throughput and MCMC mixing time

FPGA

21




Global flow
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Automation
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Design planner

* Automated design space exploration
* Batch size b

e Karush-Kuhn-Tucker (KKT) optimization
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Design planner

* Automated design space exploration
* Batch size by

e Karush-Kuhn-Tucker (KKT) optimization

 Unroll factor a
Unroll factor (a)

* Avoid excessive partitioning to registers Vi, Vs, |




Design planner

* Automated design space exploration
* Batch size b

e Karush-Kuhn-Tucker (KKT) optimization
* Unroll factor a

* Avoid excessive partitioning to registers
* Slice factor p
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Design integrator

* Customizing the H_MCMC template with in accordance to the execution schedule

 Adding memory interface to communicate with the host CPU
 Leveraging PCl express IP!1]

PO 2>

EXPRESS
(me——)
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[1] Xillybus FPGA IP core for easy DMA, xillybus.com 27
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Example data applications evaluated so far ....

* Dow-Jones index stock data Ll
Task: data regression Q
Predicting the percentage of return for each of the 30 involving stocks
Data: daily stock data for 30 companies over 6 month

* Activity recognition B
Task: data classification I
Recognition of 12 different daily activities
Data: recorded sensor body motion and vital signs at a sampling rate of 50Hz

* Synthetic time-variant data
Task: data regression
Data: 2-D regression data for visualization purposes




Example platforms evaluated so far ....
VIVADO!

 Hardware evaluation platforms HLx Editions

Platform1: Virtex VC707 Platform1: Zynq ZC702 Platform1: Virtex VCU108
On-chip memory: 4.6 MB On-chip memory: 0.6 MB On-chip memory: 7.6 MB
e Software evaluation platform Visual
Studio

Processor: 2.4GHz Intel core i5-6300U
Memory: 8 GB
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2 x 4GB DIMMS = 8GB Upgrade [
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Resource utilization

* Automated customization to maximally exploits on-chip memory
* For a given dataset, each platform has its own batch size, unroll factor, and slice factor
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Runtime and energy efficiency

e (Causalearn achieves up to 320x runtime and 400x energy improvement compared
to a highly-optimized software solution running on a 2.4GHz Intel core i5-6300U

# of data samples* SW Runtime per Causalearn Runtime Causalearn Energy
iteration C++ Improvement Virtex7 Improvement Viretx7

113.01 sec 2.4x 4.1x
512 902.98 sec 9.6x 16.5x
1024 143.35 min 42.7x 65.9x
2048 33.52 hr 320.2x 398.9x

* 10| = 10 for this experiment
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Practical desigh experiments

e Causalearn posterior distribution samples closely follow the optimal
Maximum A Posterior (MAP) solution

arggnax In(p(y|x,0)) + In(p(8))

* Example posterior distribution samples for observation noise variance
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Summary

» Proposing Causalearn, the first end-to-end framework that enables real-time
multi-dimensional PDF approximation using Hamiltonian MCMC*

» Developing an automated tool to optimize the physical performance by
considering data, algorithm, and hardware characteristics

Automation

o

» Designing an accompanying API to ensure Causalearn ease of use on various FPGAs

» Providing support for streaming data

* B. Rouhani, M. Ghasemzadeh, and F. Koushanfar, U.S. Patent No. 62452880, 2017 34



