Hardware Acceleration of the Pair HMM
Algorithm for DNA Variant Calling

Sitao Huang!, Gowthami Jayashri Manikandan!, Anand Ramachandran?,

Kyle Rupnow?, Wen-mei W. Hwu?, Deming Chen*

lUniversity of lllinois at Urbana-Champaign, USA

’Advanced Digital Sciences Center, Singapore

ECE ILLINOIS [[LEECRO S




Genomic Variation and Mutations

e Humans have two sets of 3 billion
bases in their genomes

* No two humans have identical genome
sequences
e About 0.1 % of genomes are not identical

* These differences lead to people

* Having different susceptibility or
resistance to diseases

e Responding differently to the same
medication

e There are also somatic variations that lead to
cancer
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The Importance of Mutations and
Variant Calling

e The study of mutations is important (e.g. in cancer study)
* They create cancer
e They enable cancer to survive
* They enable cancer to spread
e They enable cancer to kill

e Variant calling is a set of analytics that tries to identify
mutations in a sequenced genome compared to a standard
reference

Variant Calling is critical in cancer research and clinical applications

GATK's HaplotypeCaller is one of the most popular variant calling
tools available today.

ECE ILLINOIS [[LEECRO S




Accelerating the Pair HMM in GATK

Why Pair HMIM Needs to Be Accelerated?

= Pair HMM computations constitute the bottleneck of

HaplotypeCaller
Pair-HMM (forward algorithm)
= The full HaplotypeCaller is time consuming 142255

= Full HaplotypeCaller run on 80xXWGS PCR-Free NA12878 AT,

dataset: 13 days on single CPU

Why Using Hardware (FPGA)?

Profiling result of a typical
HaplotypeCaller run on CPU

= Parallelism in pair HMM could be better utilized by the fine-grained processing
elements in FPGA

= FPGA is good at processing streaming applications (alignment algorithms’ nature)

©
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Pair HMIMM

(candidate to be verified) (data from sequencing machine)

 Input: two sequences Sy, and S,. (Sy: haplotype S,.: read)
e Goal: find a similarity score of Sj, and S,

One possible alignment:

Another possible alignment:

~-GTAA ~G-TAA

SRl AGGTC- Sl AGGT-C

RO 11MMMD K75 imImDM

There are many action sequences mapping S,- to S;,.

S, GTAA
S, AGGTC

e Similarity score is defined over a pair Hidden Markov Model
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Pair HMM - Dynamic Programming

Haplotype

T C (€] A (€] (€] T C T A C 0
e Similarly: | “i o 4
o
G) o
. . m
Coefficients from model 2
| O N=
Dy/: - D
fO(i, j) | » B

@)t " (i, j =) Haop)f (i, j -1 }
() fM(i—l,j)f'(i—l,j) |
M, j) f“"(i—l,j—l)f'(i—l,j—l)fD(i—l,j—l))

e Output: score(Sy, Sy) = fP(Np, Ny) + fM(Ny, N,) + f1(Ny, N;.)

e Complexity: %thM\ijthr)

# read
sequences

# haplotype
sequences
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How to Accelerate?

PE: Processing Elements

Haplotype Bases

Read Bases

l:l Untouched elements . Elements being computed D Completed elements

Process “frontier” elements at the same time to maximize parallelism
Number of PEs Needed = Matrix Height
What if matrix height is larger than number of PEs FPGA can host?
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P E Ri ng * Haplotype Sequence

A G G T A C

= Connects the first PE and the last o
PE with FIFO

= Divide matrix rows to groups

92uUanbas peay

Processing Element (PE) Ring:

FIFO

* Zilong Wang, Sitao Huang, Lanjun Wang, Hao Li, Yu Wang, and Huazhong Yang. Accelerating
subsequence similarity search based on dynamic time warping distance with FPGA. In Proceedings of the
ACM/SIGDA international symposium on Field Programmable Gate Arrays, pages 53—-62. ACM, 2013.
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P E Ri ng * Haplotype Sequence

A G G T A

= Connects the first PE and the last oS

PE with FIFO g

= Divide matrix rows to groups ; 2
>

> Busy PE

Idle PE

Processing Element (PE) Ring:

FIFO

* Zilong Wang, Sitao Huang, Lanjun Wang, Hao Li, Yu Wang, and Huazhong Yang. Accelerating
subsequence similarity search based on dynamic time warping distance with FPGA. In Proceedings of the
ACM/SIGDA international symposium on Field Programmable Gate Arrays, pages 53—-62. ACM, 2013.
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P E Ri ng * Haplotype Sequence

A G G T A C

= Connects the first PE and the last
PE with FIFO

= Divide matrix rows to groups

92Juan

FIFO

Processing Element (PE) Ring:

FIFO

* Zilong Wang, Sitao Huang, Lanjun Wang, Hao Li, Yu Wang, and Huazhong Yang. Accelerating
subsequence similarity search based on dynamic time warping distance with FPGA. In Proceedings of the
ACM/SIGDA international symposium on Field Programmable Gate Arrays, pages 53—-62. ACM, 2013.
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P E Ri ng * Haplotype Sequence

A G G T A C

0
: (@]
; ()]
= Connects the first PE and the last o | §
PE with FIFO o
* Divide matrix rows to groups —
>
>

Processing Element (PE) Ring:

FIFO

* Zilong Wang, Sitao Huang, Lanjun Wang, Hao Li, Yu Wang, and Huazhong Yang. Accelerating
subsequence similarity search based on dynamic time warping distance with FPGA. In Proceedings of the
ACM/SIGDA international symposium on Field Programmable Gate Arrays, pages 53—-62. ACM, 2013.
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P E RI n g Haplotype Sequence
G G T A C

A

= Connects the first PE and the last
PE with FIFO

= Divide matrix rows to groups

Processing Element (PE) Ring:

FIFO

* Zilong Wang, Sitao Huang, Lanjun Wang, Hao Li, Yu Wang, and Huazhong Yang. Accelerating
subsequence similarity search based on dynamic time warping distance with FPGA. In Proceedings of the
ACM/SIGDA international symposium on Field Programmable Gate Arrays, pages 53—-62. ACM, 2013.
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P E Ri ng * Haplotype Sequence

A G G T A C 0

= Connects the first PE and the last
PE with FIFO

= Divide matrix rows to groups

92uUanbas peay

Processing Element (PE) Ring:

FIFO

* Zilong Wang, Sitao Huang, Lanjun Wang, Hao Li, Yu Wang, and Huazhong Yang. Accelerating
subsequence similarity search based on dynamic time warping distance with FPGA. In Proceedings of the
ACM/SIGDA international symposium on Field Programmable Gate Arrays, pages 53—-62. ACM, 2013.
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A G G T A C

P E Ri ng * Haplotype Sequence

0

(@]

)]
= Connects the first PE and the last o §
PE with FIFO g
= Divide matrix rows to groups ; 2

>

>

Processing Element (PE) Ring:

FIFO

* Zilong Wang, Sitao Huang, Lanjun Wang, Hao Li, Yu Wang, and Huazhong Yang. Accelerating
subsequence similarity search based on dynamic time warping distance with FPGA. In Proceedings of the
ACM/SIGDA international symposium on Field Programmable Gate Arrays, pages 53—-62. ACM, 2013.
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P E Ri ng * Haplotype Sequence

A G G T A C 0
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P E Ri ng * Haplotype Sequence

A G G T A C 0

= Connects the first PE and the last
PE with FIFO

= Divide matrix rows to groups

92uUanbas peay

Processing Element (PE) Ring:

FIFO

* Zilong Wang, Sitao Huang, Lanjun Wang, Hao Li, Yu Wang, and Huazhong Yang. Accelerating
subsequence similarity search based on dynamic time warping distance with FPGA. In Proceedings of the
ACM/SIGDA international symposium on Field Programmable Gate Arrays, pages 53—-62. ACM, 2013.

ECE ILLINOIS




P E Ri n g * Haplotype Sequence

A G G T A C
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P E Ri n g * Haplotype Sequence

A G G T A C 0

= Connects the first PE and the last §

PE with FIFO %

= Divide matrix rows to groups 2
Processing Element (PE) Ring:

FIFO IZ

* Zilong Wang, Sitao Huang, Lanjun Wang, Hao Li, Yu Wang, and Huazhong Yang. Accelerating
subsequence similarity search based on dynamic time warping distance with FPGA. In Proceedings of the
ACM/SIGDA international symposium on Field Programmable Gate Arrays, pages 53—-62. ACM, 2013.
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P E Ri n g * Haplotype Sequence

A G G T A C

= Connects the first PE and the last
PE with FIFO

= Divide matrix rows to groups
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Processing Element (PE) Ring:

FFo )

FIFO
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P E Ri n g * Haplotype Sequence

A G G T A C
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Challenges in Designing PE for Pair HMM

e PE structure is designed
according to the data
dependencies in the

algorithm v(PE;) = f(0' (PE:), v (PE;_1),v" (PEi_1))

 Each PE passes its ==t ==t {_"Ez_,l ,_PE_n-l_,l
. . . I I
intermediate computing v ]! pliny Kl
\ }

result to the next PE |y /by Ay
Il v Yl | V' I 1R |
I | | : I |
R v ‘ |
I y'’ : p" i : v :
|
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Challenges in Designing PE for Pair HMM - Cont.

* Floating point operations
e Long Iatency

 Complicated arithmetic
operations in DP
e Elements in three DP

matrices depend on each
other

f D(i’ J) = Ayp £ (i’ J _1) +app f D(i’ J _l) Arithmetic Operations Within a PE (Original)
fl(i’ j):aleM(i_lrj)"'au fl(i_]-’j)
M, j) = prior-(ay, f" (-1 j-1) +ay, f' (-1 j-1)+ay, F°(i-1 j-1))
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Optimization 1:

Shorten critical path in arithmetic operations

Using different input operands

Optimized f Calculation

ECE ILLINOIS 11
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fi,lj fltj)

Arithmetic Operations Within a PE (Original)
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Optimization 2:
Pipelining and resource sharing

Clock cycle k

Clock cycle k+1

Matrix12[i][j].add.cyclel

Add and multiply with

Matrix11[i][j].add.cycle2

Matrix13[i][jl.add.cyclel

12 cycles latency

Matrix10][i][j].add.cycle3

Matrix12[i][j].add.cycle2

Matrix[i][j].add.cycle4

Matrix11[i][j].add.cycle3

Matrixg[i][j].add.cycle5

Matrix10[i][j].add.cycle4

Matrix7[i][j].add.cycle6

Matrix9[i][j].add.cycle5

Matrixg[i][j].add.cycle6

KEKKE.
149444

Matrix6[i][j].add.cycle7

Matrix7[i][j].add.cycle?

= Hide the floating-point
arithmetic operations’ latency

" Improve throughput
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Optimization 3:
Tuning PE ring size and number of PE rings

= Same amount of HW ()
resource can accommodate \\\\\&
more shorter PE rings \\\\ “““““““““““““
lculati ltipl NN
ratices) \\\\\\\\\\\\

. §horter PE rings have fewer () ROy O\
idle PEs $-7

[ SRR ONE
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Experiment Result 1:
Comparison to Other Implementations

= Compared to CPU, vector

processor, GPU, multi- . Platform Runtime(ms) | Speedup

core, previous FPGA ava on CPU 10800 1%
implementations C++ on CPU 1267 O X
Intel Xeon AVX Single Core 138 78 X

= Using “10s” dataset NVidia K40 GPU 70 154
= Arria 10 has more Iogic Intel Xeon AVX 24 Cores 15 720 x

has hard f|0ating_point Our Design (Stratix V) 5.3 2038 x

DSP block Altera OpenCL (Arria 10) * 2.8 3857

Our Design (Arria 10) 2.6 4154 x

Theoretical runtime lower bound (assuming no idle PE) for 64 PEs: 4.7ms

* Altera. Accelerating genomics research with OpenCL and FPGAs, 2016.
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Experiment Result 2:
Impact of PE Ring Size

. 1.2
= Shorter PE rings
. . 0.28ms 9.99ms 69.42ms
benefit from higher ., ;
- . £
PE utilizationand &=
smaller PE 508 6.93m 47.51
. o, . . . 3
initialization o 5.75m B 8PEs/ring x 8 rings
h d by 0.6 01am 5.26ms 35. 79ms
overnea 8 ’ W 16PEs/ring x 4 rings
% 0.4 M 32PEs/ring x 2 rings
£ 0.07m
S [l 64PEs/ring x 1 ring
=Z 0.2
0
Dataset: tiny
Matrix Size: 10~41 10~263 10~302
#Pair-HMM Runs: 332 3550 29307

ECE ILLINOIS 15 [[LECLITOLS




Summary

" Pair HMM forward algorithm is computation-
intensive. It is the bottleneck of HaplotypeCaller.

" Ring-based hardware structure exhibits flexibility in
configuration and high data reuse.

" PE ring structure based pair HMM implementation
can achieve significant speedup compared to the
software implementation, and it also outperforms
the published best hardware implementation.
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HaplotypeCaller

N A
Identify ActiveRegions Assemble plausible haplotypes
'y
TATGAAATTGGTATAGGCT S A T S A -
A T o c o A o G
A T ’ pruned
g a ? : TATGAAATTGGTATAGGCT
] C
= - - L—> AT A
; : A T G|
T A (-bamOut) . ®
L J \_ J
N J
. e ~
Determine per-read likelihoods (PairHMM) Genotype sample
T — e 0/0[0r1]1/1
et s A/[¥
B N A Alld
\l' ! A" il GLs + annotations
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BACKUP

Emission and Transition Sl iDEs
Probabilities

iop — 1 — Qpase; if the bases match
P | Qpase; if the bases don’t match
amym  =1-(Q; +Qq) — match continuation Quase : Base Error Rate
ary =1-Q, _ insertion to match Q, :Base Insertion Probability
apy =1-Q, _ deletion to match Qq : Base Deletion Probability
arr = Qs _ match to insertion Qg : Gap Continuation Penalty
arr =@y — Insertion continuation
apyp = Qg — match to deletion
app =y — deletion continuation
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What’s in PE?
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| Why sequence alighment?

" Comparing genes or regions from different species
= to find important regions
= determine function
= uncover evolutionary forces

" Assembling fragments to sequence DNA
" Compare individuals to looking for mutations
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BACKUP

SLIDES

Problem Statement

(candidate to be verified) (data from sequencing machine)
 Input: two sequences Sy, and S,. (Sy: haplotype S,.: read)

e Goal: find a similarity score of Sj, and S,

e Similarity score is defined over a pair Hidden Markov Model

[ESNCRE LY
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BACKUP

SLIDES

Pair HMM - Action Sequence

e Action(Delete, Insert, Match/Mismatch)sequence {a;}s.t. Sr{a—tzSh

One possible alignment: Another possible alignment:

~—-GTAA ~G-TAA

S AGGTC- S AGGT-C

FT7ST 11MMMD FT7] IM1MDM

There are many action sequences mapping S,- to §;,.
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Pair HMM - Probability

e Each action sequence is associated with a probability:

App
Delete
D
A par

Pl = | [peaclary)
t
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BACKUP

SHDES

Similarity score — Dynamic Prograrl

score(susy= Y Plad = 20N
s

£200, ) =ayo " (i, j-1)
+ag, £ (0, - 1)

S R

probability dependency (Markov)
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BACKUP

° SLIDES
Recursion
Haplotype
. . | C (€] A | A C 0
e Similarly: O 5
o
FO(i, ) = ayo T (i, j ~1) +apo (i, j-1) 3

f'(i’j):aleM(i_]_’ j)‘*‘aufl(i_l’ J)
M, j) = prior-(ay, F" (-1 -1 +ay, f' (-1 j-1)+ay, F°(-1 j-1))

e Output: score(Sy, Sy) = fP(Np, Ny) + fM(Ny, N,) + f1(Ny, N;.)

e Complexity: %thM\ijthr)

# read
sequences

# haplotype
sequences
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