
FPGA-Accelerated Transactional Execution
of Graph Workloads

Xiaoyu Ma1, Dan Zhang 1, and Derek Chiou 1,2

1The University of Texas at Austin
2Microsoft

2017-2-24

Graph Applications

• Graphs are a core data structure for many problems
 E.g. social/computer network, EDA, machine learning, ...

•Massive irregular DLP in large graphs
 Same operations are applied to many nodes/edges

 Dominated by pointer-based operations

• Graphs are inefficient on CPUs and GPUs
 CPUs

◦ Area and power inefficiency due to the focus on ILP

 GPUs

◦ Resource under-utilization due to irregularity

2

Our Approach

•A parallel architecture to exploit irregular DLP for
graph acceleration
 A large number of threads
◦ Interleaved execution for latency hiding

 Non-lockstep (asynchronous) execution for efficiency
◦ No SIMD execution

 Use transactions for synchronization
◦ Each thread is a transaction
◦ Hardware support

• FPGA-based Specialization
 Reduce general-purpose compute overhead
 Exploit fine-grained parallelism
 Improve power efficiency

3

Challenges of Large-Scale Transactional Execution

1. Increased conflicts due to increased concurrency
 Conflicts can hurt or negate the benefits of parallelization

2. Scalable conflict detection
 Need to handle 100s/1000s concurrent threads
 Conflict detection without bulk synchronization
◦ KILO-TM (Fung et al. MICRO2011) on GPUs
◦ Not applicable to asynchronous execution

3. Possible livelocks
 Due to circular transaction aborting

4. On-chip buffer overflow
 Due to too many/large transactions

4

Accelerator Architecture Overview

• Memory model
 Global shared memory
 Work data memory
 Thread-private scratchpad

• Worklists
 Work schedulers

◦ Bucket priority scheduling
◦ FIFO scheduling

 Work distribution and load balancing

• Many processing engines
 Lightweight; focus on TLP not ILP
 Threads running in non-lockstep
 HW multi-threading for latency tolerance
 Many outstanding memory requests

• Synchronization
 Optimistic parallel execution
 Transactions supported by hardware Transactional Memory

• Implemented as FPGA synthesizable RTL using Bluespec

5

Key Techniques
• Conflict detection
 A directory-based, eager approach with on-chip metadata

• Version management
 Support both eager and lazy
 An extra option that eliminates versioning overhead

• Dynamic concurrency control
 Dynamically turn on/off threads based on conflict rate
◦ Adapt the thread count to available parallelism

 Also eliminate livelocks
◦ In case of livelock, all transactions are aborts
◦ Will keep reducing threads until single-thread execution

• A cache hierarchy for transactional states

6

Conflict Detection (1)
Read/Write Execution Flow

•Detect conflict before servicing each global
memory request

7

Conflict Detection (2)
Address Signature Table (AST)
• A distributed directory containing metadata for conflict detection

• How are read/write signatures recorded in each AST entry?
 Prior work: per-thread bits for reads and writes
◦ For example, 1K HW threads and 64K AST entries
◦ AST size: (1K+1K)*64K/8 Bytes = 16M Bytes

◦ Optimization: a thread-ID for all writes
◦ AST size: (1K+10+1)*64K/8 Bytes = ~8M Bytes

 Our approach: a thread-ID for both reads and writes
◦ AST size: (10 + 1 + 1)*64K/8 Bytes = 96K Bytes
◦ Enable small, on-chip AST for low-latency conflict detection
◦ One problem: read-read (R-R) false conflict?

◦ Having multiple thread-IDs can reduce but not eliminate R-R conflicts

8

Eliminate Versioning Overhead

•Cautious transactions do not need version
management
 The decision of commit/abort can be made before any

write occurs

•A transaction is cautious if
 All reads occur before all writes in program order

 Any write requires a preceding read to the same address

•Most graph applications are naturally cautious
(Mendez-Lojo et al. PPoPP2010)
 All non-cautious transactions are transformable to

cautious transactions

9

Applications and Inputs
• Applications

• Inputs

10

Category Application

Graph traversal Vertex Exploration (VE)

Shortest path problems
Single Source Shortest Path (SSSP)

Breadth First Search (BFS)

Connectivity Analysis
Connected Components (CC)

Transitive Closure (TC)

Graph coloring Bipartite Coloring (BC)

Graph Characteristics
Size

S/L Nodes Edges Bytes

Road
Uniform degree
Large diameter

Small 1.9M 4.7M 136MB

Large 24M 58M 1.6GB

Random
Uniform degree
Random connectivity

Small 1M 4M 96MB

Large 16M 64M 1.5GB

Scale-free (RMAT) Power-law degree
Small 256K 2M 40MB

Large 4M 32M 640MB

Evaluation
• Implemented using Bluespec System Verilog
 Generated C++ for simulation (10X faster than RTL sim)
 Generated Verilog for FPGA synthesis
◦ 200MHz on Xilinx Virtex UltraScale 440

• Developed on FAbRIC (www.openfabric.org)
 An open science FPGA cloud infrastructure hosted by Texas

Advanced Compute Center (TACC)

• Evaluated up to 4 FPGAs only in simulation
 Per-FPGA Configuration
◦ 128 threads on 8 engines per FPGA
◦ 2/4 worklist slices, each feeding 64/32 threads
◦ 2 DDR4 SDRAM channels per FPGA
◦ 25.6 GB/s peak memory bandwidth per FPGA

11

Simulation Results (1)
Scalability

• Speedup over single-thread execution

12

Simulation Results (2)
Bottleneck Analysis
• Conflict rate (conflicts/commits)

• Commits (divided by single-thread baseline)

• Memory bandwidth
 25.6GB/s per-FPGA bandwidth is saturated at 128 threads

13

Simulation Results (3)
Dual-socket Comparison with Intel CPUs

• Baseline
 Dual-socket Intel Haswell

◦ 12 cores per socket

◦ 2 DRAM channels per socket

 Galois (Pingali et al. at UT-Austin)

◦ Using fine-grained locks

• Our approach
 Dual-socket FPGAs

 128 threads per socket

 2 DRAM channels per socket

14

Conclusion

•We proposed
 An approach of large-scale transactional execution

 An architecture to achieve this approach

 A set of techniques to reduce conflict overhead

•An FPGA-based implementation of our approach
improves performance and energy efficiency
compared to an Intel Haswell-based platform

• Future work
 An extensive study of micro-architectural alternatives

 Replace transactions with fine grain locks

 More applications

15

Thanks!

•Questions?

16

