WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

Boosting the Performance of FPGA-based Graph
Processor using Hybrid Memory Cube: A Case for
Breadth First Search

Jialiang Zhang, Soroosh Khoram and Jing Li

Outline

Background

— Big graph analytics

— Hybrid Memory Cube (HMC)

BFS implementation on HMC-FPGA platform

— Level synchronized BFS
— Optimization
Performance model
Evaluation

Conclusion

@ Outline

* Background
— Big graph analytics

Big Graph Applications

Cyber security Social Media Analysis Infrastructure Monitoring

® B@gp o |

oo PSS \Z?

Which cyber events Who influences me to Can | spot failures
are probes on the buy a product? before they become
network? critical?

 Graphanalyticsisbeginningto be applied to a broad set of
problems

From http://www.darpa.mil/attachments/HIVE_Proposers_Day_PM_Briefing.pdf

Big Graph is Sparse

Cyber security Social Media Analysis Infrastructure Monitoring

-

Can | spot failures

Which cyber events Who influences me to

are probes on the buy a product? before they become
network? critical?

Only a small Since only a few Only a small number of
number of events people have direct critical dependencies
are probes influence on me

* Graph is sparse

From http://www.darpa.mil/attachments/HIVE_Proposers Day_PM_Briefing.pdf

@ Challenges in Sparse Graph Traversal

* Big sparse graph is stored in Vertex-Centric Model [1]

* Vertex-Centric model leads to
—Random memory access pattern
— Poor locality
—High synchronization cost

* DDR SDRAM is not a good fit

—Streaming friendly interface
— Lack of parallelism

[1] Mccune, et al. Thinking Like a Vertex: A Survey of Vertex-Centric Frameworks for Large-Scale
Distributed Graph Processing

@ Outline

* Background

— Hybrid Memory Cube (HMC)

Hybrid Memory Cube (HMC)

HMC is an emerging memory
technology

More parallelism:

» 3D Stacking: 8 layers

* More bank: 512 bank in single chip
* Returned datais out-of-order

Interface is friendly to Random
Access

e Packet based serial interface

* Smaller granularity (16B, 32B, 64B,
128B)

Near Data Computation
* Logic on the bottom die

/ / / Vaur
Partition

-]S‘Js + rbvs S $

vy v v Y

Vault Vault Vauk Vauk
Controber, | Controller, | Conrroller, e Controller,
Logic Layer
&

Crossbar Swirch

SerDes Buffers

A= 11T - 11

@ Outline

* BFS implementation on HMC-FPGA platform
— Level synchronized BFS

@ Breadth First Search

* Breadth First Search (BFS)

—A systematic way to traverse the graph

—A building block for many other algorithms
—Plenty of data-parallelism in large graph instances
—Preferred as parallel benchmark (GRAPH500)

* We use BFS as a case study to examine the
performance of graph application using HMC

Level Synchronized BFS

e Start froma root, and visit all the connected nodesin a graph
 Nodescloserto the root are visited first

 Nodesof the same hop-distance (level) from theroot can be visited in parallel

Algorithm 1 Level-synchronized BFS

1: procedure BFS
; levellvs] =1

* 3 vertex set: Visited,

2:
3 parent[vs] = NULL & Current, Next
4 current frontier <— v

5: current_level = 1

6: while current frontier not empty do
7.

8

9

for v € current frontier do
current frontier = current frontier — v
: E,={neV|(v,n) € E}
10: for n € E, do

11: if level[n] is O then

12: level[n| = current_level + 1
13: parent|n] = v

14: next frontier <— n

15: current_level = current_level + 1

16: Swap current frontier with next frontier

Level Synchronized BFS

e Start froma root, and visit all the connected nodesin a graph
 Nodescloserto the root are visited first

 Nodesof the same hop-distance (level) from theroot can be visited in parallel

Algorithm 1 Level-synchronized BFS

1: procedure BFS
; levellvs] =1

2:
3 parent[vs] = NULL

4 current frontier <— v

5: current_level = 1

6: while current frontier not empty do * Load node of current level
7

8

9

for v € current frontier do &=

_ : in parallel
current frontier = current frontier — v
: E,={neV|(v,n) € E}
10: forn € F, do
11: if level[n] is O then
12: level[n| = current_level + 1
13: parent|n] = v
14: next frontier <— n
15: current_level = current_level + 1

16: Swap current frontier with next frontier

Level Synchronized BFS

e Start froma root, and visit all the connected nodesin a graph
 Nodescloserto the root are visited first

 Nodesof the same hop-distance (level) from theroot can be visited in parallel

Algorithm 1 Level-synchronized BFS

1: procedure BFS
; levellvs] =1

2:
3 parent[vs] = NULL

4 current frontier <— v

5: current_level =1

6: while current frontier not empty do
7: for v € current frontier do

8
9

current frontier = current frontier — v * Load Neighbors of current
10: ﬁ;;énEf (‘Q(U’n) < i}_ level nodes in parallel
11: if level[n] is O then
12: level[n| = current_level + 1
13: parent|n] = v
14: next frontier <— n
15: current_level = current_level + 1

16: Swap current frontier with next frontier

Level Synchronized BFS

e Start froma root, and visit all the connected nodesin a graph
 Nodescloserto the root are visited first

 Nodesof the same hop-distance (level) from theroot can be visited in parallel

Algorithm 1 Level-synchronized BFS

1: procedure BFS
; levellvs] =1

2:
3 parent[vs] = NULL
4 current frontier <— v
5: current_level =1
6: while current frontier not empty do
7: for v € current frontier do
8 current frontier = current frontier — v
9: E,={neV|(v,n) € E}
10: forn € E, do

11: if level[n] is O then

12: level|n| = t_level 4+ 1

13: pivfeg';‘ n] i“,,fm” ~tever * Synchronize atthe end of
14: next frontier < n €= each level

15: current_level = current_level + 1

16: Swap current frontier with next frontier

@ Outline

* BFS implementationon HMC-FPGA platform

— Optimization

15

Mark Vertices using Bitmap

e Using bitmap to mark the vertices during visit
— Reduce the work size of the visited set

— Requires atomic operation as two parallel kernel may want to update
different address in the same memory address

— Atomic operation is costly

. 1]...]0]...]0| “0” indicates the vertices should be visted in next level

* HMC could help with its built-in atomic bit update command
— Use a bitmask to change the granularity to 1 bit

16

Map-Reduce-Like BFS Framework

* Map-Reduce-like framework divide
BFS kernel into independent stages
(no data dependency):

* Mapper: Get neighbors of
current level

e Reducer: Mark the vertices
needs to be visited next

* Mappers and reducers communicates
via HMC
* The returned data is out of order
e Using a command buffer to
separate the traffic from
different kernels

e e JFPGA |
'| Mapper Mapper | | \ | Reducer |+ +| Reducer \
L___t _______ 1__: :_____T ________ I__J
:"_ f"""Ete'cmmTeE"""""n
|
I Upstream : Command : Downsztream
[Queus Buffer) :
1
TR, SO e v
§ l' . & user
\ 4 Port
| HMC Controller
A A
HMC Link
Y Y
| Interconnect

i e

¥

Neighbor
Lizt

Bitmap

| Atomic TI l I

Two-level Bitmap

Ly
M; «—| ... |1|0]| FPGA
. = ! Bitmap
¢S . . bits _-~Gbits -~ Gbits |
canning bitmap at each T Tol To] HMC
: iRk Bit
level is costly , , R
 Lotsof “0” inthe bitmap L,
due to the nature of sparse
graph | iMapper e i FPGA |
GetFPGA B BRAM |
* Bitmapistoolarge forthe i e e 11 | !
BRAM | | GetHMC Bitmap | i |
: ———>»| GetNeighbor List || | i
* Proposeto usetwo-level bitmap i Reducer | update Bitmap, _1'__4:;33,7 :
* Store a small bitmap on-chip | el | B N A
 Remove the unnecessary | | upsmeam | | .o | | Downstream i
HMC access due to bitmap i Q ;’e ==
scanning L HMC Controller - |i
|

* Performance model

19

Outline

Performance Analysis of the BFS
Implementation

* We present an analytical model for HMC access latency.

* Applythe model to our BFS implementationand understand
the performance of the BFS bitmap scan step.

* Choose the optimal parameter based the analysis

@ Key Observations from HMC Architecture

* Packets are serialized through the 10. The packet duration is
proportional to the size of the packet includingthe data being
transferred, the header, and the tail.

* The HMC latency of a packet comprises
— A constant delay of processing the packet header
— Data transfer delay which is proportional to data size.

 The internal delay changes if there is a vault conflict. Parallel
access to different vaults resultin less latency compared to
accesses with vault conflicts.

21

@ Analytical Performance Model

e Access latency dependson:

— g: packet size e parameters '

— H: Header size | A FPGA

— B: Link bandwidth %{ g _(1i:BB/S _______

— b: Internal bandwidth y v Interconnect |

— t.: Header processing latency % tc,, i ﬁb B/S ﬁ
* For an byte HMC reads : - Vaults |
* Access Latency = n% + ng+2H + €, _____________________________ HMC

g should be large for most reads and small for writes.

Performance of Bitmap Scan of BFS

* Bitmap scan latency is

g g+2H
Tscanl — Ml(kg‘l' k b +t¢)

— M;: Number of “1” in the on-chip bitmap

— k: Number of HMC requests L1
— G: Mapping granularity (L, /L) | '1 ol FPGA
* Forgraph with IV verticesand L levels, to get PO Bitmap
: _-~Gbits _-* Gbits i
p speedup, we need to satisfy: HMC
SQ/T I o 1] 0]+ O Bitmap
G < La(1—(1— \4 l " '
| 1= L25T’)) L,

— Higher speedup (f) requires smaller G.

— Increasing (G leadsto less on-chip memory
usage without hurting performance, as
long as the condition holds.

@ Insights from the Model and Analysis

* The packet size g should be large for reads and
small for writes.

* The mapping granularity condition

8qg'T L
LT ")

G<L2(1—(1—

* Evaluation

25

Outline

Experimental Setup

HMC capacity: 4GB

. 4GB
g HMC
x8 N\ A
N 12C
 /
Xilinx
» KCUO060
FPGA
(@) I

26 Host

x8

Platform: Pico Computing AC510
FPGA: Xilinx Ultra scale KCUO60
HMC bandwidth: 30GB/s on both direction

<¢— 5 HMC user ports

<+

User | User | User | User | User
Logic | Logic | Logic | Logic | Logic
HMC Controller

(b) HMC

-

Implemented
in FPGA

HMC 1.1
compliant
interface

@ Experimental Dataset

* Random Graph
—Generated follows GRAPH500 benchmark

 Data size:

—Scale (log,(Number of Vertices))

e 23: 8 millions
e 24: 16 millions
e 25: 32 millions

—Edge Factor(Average number of neighbors):
*2,4,8,16

HMC Access Performance

0.25 0.25
100% Read ¢
100% Write ¢
he} 0.2 50% Read,50% Write ¢ 0.2 b
5 ' 100% Atomic Write o
3 5
@ [&]
g 015, & 015
i [
o) o
< o
'§_ 0.1 % 0.1
= %
2 2 X
@ 0.05 5 0.05
@D
0 0
16 32 48 64 80 9 112 128 16 32 48 64 80 9% 112 128
Payload Size (bytes) Payload Size (bytes)
Random Access Benchmark BES

We achieve a balanced access distribution among vaults
and banks

28

Two level Bit-map Gain (HMC Access)

* Two-level bitmap can effectively reduce HMC request for
bitmap scanning
— Larger gain onlarge graph
— Larger gain on more sparse graph

SCALE=23 SCALE=24 SCALE=25
05 g 05 05
@ 0.45 ® 0.45 | ® 0.45
& 04 S 04} g 04
E o35 E 035! E o35
D 0 D
= 03 5 03} = 03
2 02 202 2 0.25
g 020 . . g o2l .. . g o2t . .
4 8 12 16 4 8 12 16 4 8 12 16

Edge Factor Edge Factor Edge Factor

29

30

 Two-level bitmap

Two level Bit-map Gain (BFS)

— Can effectively speed up BFS

— Scalable to the graph scale

— Less sensitive to the graph sparsity

Two Level

Single Level

(’0/3\200
w 180
|—
=160
5140
o
on 120
Lo
0100

40

SCALE=23

4 8 12
Edge Factor

SCALE=23

16

PS)

30

(MT

BFS Perf.
o o

4

8 12
Edge Factor

16

SCALE=24

(;J'-)\QOO

w 180

|_

=160

“5 140

a

n 120

L

m 100

4 8 12 16
Edge Factor
SCALE=24

740

m

— 30

=

20

e

p 10

LL

o0

4 8 12 16

Edge Factor

§200
w 180
|—
=160
5140
o
w120
L
0100

nN W A
o O O

—_

BFS Perf. (MTEPS)
o o

SCALE=25
4 8 12 16
Edge Factor
SCALE=25
4 8 12 16

Edge Factor

Performance Comparison

System Torous
Graph [3]

Dataset Random Twitter Twitter Random
Scale 26 26 26 22

Edge Factor 16 35 16 16
Runtime(ms) 3.851 ms 121 ms 148 ms 76ms
Performance 166.2 12.0 9.9 19.2
(MTEPS)

[1] FPGP: Graph processing framework on fpga a case study of breadth-first search
[2] Torusbfs: A novel message-passing parallel breadth-first search architecture on FPGAs
[3] Graphgen: An FPGA framework for vertex-centric graph computation

31

32

Conclusion

HMC is a good fit for sparse graph traversal
— Good random access performance

— Support near-memory atomic operation

BFS implementation using FPGA+HMC

— Map-Reduce-like framework

— Two-level Bitmap

Analytical model

— Access granularity

— Bitmap granularity

Experimental results verified the effectiveness of proposed
techniques

33

We especially thank Micron for the donation of the development tool and hardware.

