
Boosting	the	Performance	of	FPGA-based	Graph	
Processor	using	Hybrid	Memory	Cube:	A	Case	for	

Breadth	First	Search

Jialiang	Zhang, Soroosh Khoram and	 Jing	Li

1

Outline

• Background	
– Big	graph	analytics
– Hybrid	Memory	Cube	(HMC)

• BFS	implementation	on	HMC-FPGA	platform
– Level	synchronized	BFS
– Optimization

• Performance	model	
• Evaluation
• Conclusion

2

Outline

• Background	
– Big	graph	analytics
– Hybrid	Memory	Cube	(HMC)

• BFS	implementation	on	HMC-FPGA	platform
– Level	synchronized	BFS
– Optimization

• Performance	model	
• Evaluation
• Conclusion

3

Big	Graph	Applications

Cyber	security Social	Media	Analysis Infrastructure	Monitoring

Which	cyber	events	
are	probes	on	the	
network?

Who	influences	me	to	
buy	a	product?

Can	I	spot	failures	
before	they	become	
critical?

• Graph	analytics	is	beginning	to	be	applied	to	a	broad	set	of	
problems

From	http://www.darpa.mil/attachments/HIVE_Proposers_Day_PM_Briefing.pdf

Big	Graph	is	Sparse

Cyber	security Social	Media	Analysis Infrastructure	Monitoring

Which	cyber	events	
are	probes	on	the	
network?

Who	influences	me	to	
buy	a	product?

Can	I	spot	failures	
before	they	become	
critical?

Only	a	small	
number	of	events	
are	probes

Since	only	a	few	
people	have	direct	
influence	on	me

Only	a	small	number	of	
critical	dependencies

• Graph	is	sparse
From	http://www.darpa.mil/attachments/HIVE_Proposers_Day_PM_Briefing.pdf

Challenges	in	Sparse	Graph	Traversal

• Big	sparse	graph	is	stored	in	Vertex-Centric	Model	[1]
• Vertex-Centric	model	leads	to
–Random	memory	access	pattern
–Poor	locality
–High	synchronization	cost

• DDR	SDRAM	is	not	a	good	fit	
– Streaming	friendly	interface
– Lack	of	parallelism

6

[1] Mccune,	et	al.	Thinking	Like	a	Vertex:	A	Survey	of	Vertex-Centric	Frameworks	for	Large-Scale	
Distributed	Graph	Processing

Outline

• Background	
– Big	graph	analytics
– Hybrid	Memory	Cube	(HMC)

• BFS	implementation	on	HMC-FPGA	platform
– Level	synchronized	BFS
– Optimization

• Performance	model	
• Evaluation
• Conclusion

7

Hybrid	Memory	Cube	(HMC)

• HMC	is	an	emerging	memory	
technology	

• More	parallelism:
• 3D	Stacking:		8	layers
• More	bank:	512	bank	in	single	chip
• Returned	data	is	out-of-order	

• Interface	is	friendly	to	Random	
Access
• Packet	based	serial	interface
• Smaller	granularity	(16B,	32B,	64B,	
128B)

• Near	Data	Computation
• Logic	on	the	bottom	die

8

Outline

• Background	
– Big	graph	analytics
– Hybrid	Memory	Cube	(HMC)

• BFS	implementation	on	HMC-FPGA	platform
– Level	synchronized	BFS
– Optimization

• Performance	model	
• Evaluation
• Conclusion

9

Breadth	First	Search	

• Breadth	First	Search	(BFS)
–A	systematic	way	to	traverse	the	graph
–A	building	block	for	many	other	algorithms
–Plenty	of	data-parallelism	 in	large	graph	instances
–Preferred	as	parallel	benchmark	(GRAPH500)

• We	use	BFS	as	a	case	study	to	examine	the	
performance	of	graph	application	using	HMC

10

Level	Synchronized	BFS

11

• 3	vertex	set:	Visited,	
Current,	Next

• Start	from	a	root,	and	visit	all	the	connected	nodes	in	a	graph
• Nodes	closer	to	the	root	are	visited	first
• Nodes	of	the	same	hop-distance	(level)	from	the	root	can	be	visited	in	parallel

Level	Synchronized	BFS

12

• Load	node	of	current	level	
in	parallel

• Start	from	a	root,	and	visit	all	the	connected	nodes	in	a	graph
• Nodes	closer	to	the	root	are	visited	first
• Nodes	of	the	same	hop-distance	(level)	from	the	root	can	be	visited	in	parallel

Level	Synchronized	BFS

13

• Load	Neighbors	of	current	
level	nodes	 in	parallel

• Start	from	a	root,	and	visit	all	the	connected	nodes	in	a	graph
• Nodes	closer	to	the	root	are	visited	first
• Nodes	of	the	same	hop-distance	(level)	from	the	root	can	be	visited	in	parallel

Level	Synchronized	BFS

14

• Synchronize	at	the	end	of	
each	level

• Start	from	a	root,	and	visit	all	the	connected	nodes	in	a	graph
• Nodes	closer	to	the	root	are	visited	first
• Nodes	of	the	same	hop-distance	(level)	from	the	root	can	be	visited	in	parallel

Outline

• Background	
– Big	graph	analytics
– Hybrid	Memory	Cube	(HMC)

• BFS	implementation	on	HMC-FPGA	platform
– Level	synchronized	BFS
– Optimization

• Performance	model	
• Evaluation
• Conclusion

15

Mark	Vertices	using	Bitmap	

• Using	bitmap	to	mark	the	vertices	during	visit
– Reduce	the	work	size	of	the	visited	set
– Requires	atomic	operation	as	two	parallel	kernel	may	want	to	update	
different	address	in	the	same	memory	address

– Atomic	operation	is	costly	

• HMC	could	help	with	its	built-in	atomic	bit	update	command
– Use	a	bitmask	to	change	the	granularity	to	1	bit

16

“0”	indicates	the	vertices	should	be	visted in	next	level

Map-Reduce-Like	BFS	Framework

• Map-Reduce-like	framework	divide	
BFS	kernel	 into	independent stages	
(no	data	dependency):
• Mapper:	Get	neighbors	of	
current	level

• Reducer:	Mark	the	vertices	
needs	to	be	visited	next

• Mappers	and	reducers	communicates	
via	HMC
• The	returned	data	is	out	of	order
• Using	a	command	buffer	 to	
separate	the	traffic	from	
different	kernels

Two-level	Bitmap

• Scanning	bitmap	at	each	
level	is	costly	
• Lots	of “0”	in	the	bitmap	

due	to	the	nature	of	sparse	
graph

• Bitmap	is	too	large	for	the	
BRAM

• Propose	to	use	two-level	bitmap	
• Store	a	small	bitmap	on-chip
• Remove	the	unnecessary	
HMC	access	due	to	bitmap	
scanning

𝐿"

𝐿#

𝑀%	
bits

Outline

• Background	
– Big	graph	analytics
– Hybrid	Memory	Cube	(HMC)

• BFS	implementation	on	HMC-FPGA	platform
– Level	synchronized	BFS
– Optimization

• Performance	model	
• Evaluation
• Conclusion

19

Performance	Analysis	of	the	BFS	
Implementation

• We	present	an	analytical	model	for	HMC	access	latency.

• Apply	the	model	to	our	BFS	implementation	and	understand	
the	performance	of	the	BFS	bitmap	scan	step.

• Choose	the	optimal	parameter		based	the	analysis

Key	Observations	from	HMC	Architecture

• Packets	are	serialized	through	the	IO.	The	packet	duration	is	
proportional	to	the	size	of	the	packet	including	the	data	being	
transferred,	the	header,	and	the	tail.	

• The	HMC		latency	of	a	packet	comprises
– A constant	delay	of	processing	the	packet	header	
– Data	transfer	delay	which	is	proportional	to	data	size.	

• The	internal	delay	changes	if	there	is	a	vault	conflict	.	Parallel	
access	to	different	vaults	result	in	less	latency	compared	to	
accesses	with	vault	conflicts.	

21

Analytical	Performance	Model

• Access	latency	depends	on:
– 𝑔:	packet	size
– 𝐻:	Header	 size
– 𝐵:	Link	bandwidth
– 𝑏:	Internal	bandwidth
– 𝑡,:	Header	processing	latency

• For	a	n	byte	HMC	reads	:

• 𝐴𝑐𝑐𝑒𝑠𝑠	𝐿𝑎𝑡𝑒𝑛𝑐𝑦 = 𝑛 78 + 𝑛
7:#;
< + 𝑡,

FPGA

Interconnect

Vaults… …

𝐵	 𝐵 𝑠=

HMC

𝑏	𝐵 𝑠= …

𝐻
𝐵

𝑡,
𝑔
𝑏

𝑔 + 𝐻
𝐵

HMC	parameters

𝑔 should	be	large	for	most	reads	and	small for	writes.

Performance	of	Bitmap	Scan	of	BFS

• Bitmap	scan	latency	is	
𝑇?,@AB = 𝑀%(𝑘

7
8 + 𝑘 7:#;8 + 𝑡,)

– 𝑀%:	Number	of	 “1”	in	the	on-chip	bitmap
– 𝑘:	Number	of	HMC	requests	

– G:	Mapping	granularity	(𝐿#/𝐿")
• For	graph	with	𝑉 vertices	and	𝐿 levels,	to	get	
𝛽 speedup,	we	need	to	satisfy:

– Higher	speedup (𝛽)	requires	smaller𝐺.
– Increasing	𝐺	leads	to	less	on-chip	memory	
usage	without	hurting	performance,	as	
long	as	the	condition	holds.

𝐿"

𝐿#

Insights	from	the	Model	and	Analysis

• The	packet	size	𝑔 should	be	large	for	reads	and	
small for	writes.

• The	mapping	granularity	condition

Outline

• Background	
– Big	graph	analytics
– Hybrid	Memory	Cube	(HMC)

• BFS	implementation	on	HMC-FPGA	platform
– Level	synchronized	BFS
– Optimization

• Performance	model	
• Evaluation
• Conclusion

25

Experimental	Setup

26

FPGA

HMC

• Platform:	Pico	Computing	AC510
• FPGA:	Xilinx	Ultra	scale	KCU060
• HMC	bandwidth:	30GB/s	on	both	direction
• HMC	capacity:	4GB

Experimental	Dataset

• Random	Graph	
–Generated	follows	GRAPH500	benchmark

• Data	size:
–Scale	(𝑙𝑜𝑔#(Number	of	Vertices))	
• 23:	8	millions
• 24:	16	millions
• 25:	32	millions

–Edge	Factor(Average	number	of	neighbors):
• 2,	4,	8,	16

27

HMC	Access	Performance

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 16 32 48 64 80 96 112 128

B
ill

io
n
 u

p
d
a
te

s
p
e
r

se
co

n
d

Payload Size (bytes)

100% Read
100% Write

50% Read,50% Write
100% Atomic Write

28

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 16 32 48 64 80 96 112 128

Bi
llio

n
U

pd
at

es
 P

er
 S

ec
on

d

Payload Size (bytes)

Random	Access		Benchmark BFS

We	achieve	a	balanced	access	distribution	among	vaults	
and	banks

Two	level	Bit-map	Gain	(HMC	Access)

29

• Two-level	bitmap	can	effectively	reduce	HMC	request	for	
bitmap	scanning	
– Larger	gain	on	large	graph
– Larger	gain	on	more	sparse	graph

Two	level	Bit-map	Gain	(BFS)

30

• Two-level	bitmap	
– Can	effectively	speed	up	BFS
– Scalable	to	the	graph	scale
– Less	sensitive	to	the	graph	sparsity

 100

 120

 140

 160

 180

 200

 4 8 12 16

B
F

S
 P

e
rf

.
(M

T
E

P
S

)

Edge Factor

SCALE=23

 100

 120

 140

 160

 180

 200

 4 8 12 16

B
F

S
 P

e
rf

.
(M

T
E

P
S

)
Edge Factor

SCALE=24

 100

 120

 140

 160

 180

 200

 4 8 12 16

B
F

S
 P

e
rf

.
(M

T
E

P
S

)

Edge Factor

SCALE=25

 0

 10

 20

 30

 40

 4 8 12 16

B
F

S
 P

e
rf

.
(M

T
E

P
S

)

Edge Factor

SCALE=23

 0

 10

 20

 30

 40

 4 8 12 16

B
F

S
 P

e
rf

.
(M

T
E

P
S

)

Edge Factor

SCALE=24

 0

 10

 20

 30

 40

 4 8 12 16

B
F

S
 P

e
rf

.
(M

T
E

P
S

)

Edge Factor

SCALE=25

Single	Level

Two	Level

Performance	Comparison

31

System Ours FPGP[1] GRAPHGEN[2] Torous
Graph	[3]

Dataset Random Twitter Twitter Random

Scale 26 26 26 22

Edge	Factor 16 35 16 16

Runtime(ms) 3.851	ms 121	ms 148	ms 76ms

Performance
(MTEPS)

166.2 12.0 9.9 19.2

[1] FPGP:	Graph	processing	 framework	on	fpga a	case	study	of	breadth-first	search	
[2]	Torusbfs:	A	novel	message-passing	parallel	breadth-first	search	architecture	on	FPGAs	
[3] Graphgen:	An	FPGA	framework	for	vertex-centric	graph	computation	

Conclusion

• HMC	is	a	good	fit	for	sparse	graph	traversal	
– Good	random	access	performance	
– Support	near-memory	atomic	operation

• BFS	implementation	using	FPGA+HMC
–Map-Reduce-like	framework
– Two-level	Bitmap

• Analytical	model
– Access	granularity
– Bitmap	granularity

• Experimental results verified the effectiveness of proposed
techniques

32

33

Thanks!

We	especially	thank	Micron	for	the	donation	of	the	development	tool	and	hardware.	

