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Technology Mapping for FPGASs

A typical FPGA CAD flow

» Technology mapping is RTL elaboration
an essential step in
FPGA CAD flow v

Logic synthesis

— Dictates the design area
(i.e., number of LUTSs) '
_ Large impact on timing Technology mapping
of the final design
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Placement and routing
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Bitstream generation
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Technology Mapping for FPGASs

» Cover a gate-level logic network
using LUTs
— K-input LUT (k-LUT) can
implement any k-input 1-output
combinational logic network
— This work focuses on
combinational circuit
» Quality metrics for technology
mapping
— Area: number of LUTs needed

— Depth: longest path from PI to
PO in # of LUTs
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Tech Mapping for Area is a Hard Problem
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» Case 1: no logic restructuring
— Already NP-hard 1]
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Tech Mapping for Area is a Hard Problem

» Case 1: no logic restructuring
— Already NP-hard 1]

» | Case 2: with logic restructuring {7 Focus of this work
— Even harder to find optimal solution

— Existing approach: heuristically transform logic network for better
mapping quality

Goal: map to 3-input LUTs
ab ac

0, 0,

[1] Farrahi and Sarrafzadeh, TCAD’02



Representative Academic Mappers

Average area reduction for a set of MCNC benchmarks
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World Record for Area Optimization

Best LUT-6 implementation for EPFL benchmark suite [1]

Best results for LUT6 count

Arithmetic
Benchmark name Author's name Author's affiliation Synthesis Method Size Depth
Adder Robert K. Brayton & Alan Mishchenko UC Berkeley ABC Extreme Mapper 201 73
Barrel Shifter Robert K. Brayton & Alan Mishchenko ucC Berkeley ABC Extreme Mapper 512 4
Divisor Robert K. Brayton & Alan Mishchenko ucC Berkeley ABC Extreme Mapper 3813 1542
H‘,prTEHUSE FEF FEF FEF FEF FEF
Log2 Robert K. Brayton & Alan Mishchenko UC Berkeley ABC Extreme Mapper 7344 142
Max Robert K. Brayton & Alan Mishchenko ucC Berkeley ABC Extreme Mapper 532 192
Multiplier Robert K. Brayton & Alan Mishchenko ucC Berkeley ABC Extreme Mapper 5681 120
Sine Robert K. Brayton & Alan Mishchenko UC Berkeley ABC Extreme Mapper 1347 62
Sgquare-root Robert K. Brayton & Alan Mishchenko UC Berkeley ABC Extreme Mapper 3286 1180
Square Robert K. Brayton & Alan Mishchenko uc Berkeley ABC Extreme Mapper 3800 116
Random-control
Benchmark name Author's name Author's affiliation Synthesis Method Size Depth
Round-robin arbiter | Robert K. Brayton & Alan Mishchenko UC Berkeley ABC Extreme Mapper 429 24
ALU ctrl Robert K. Brayton & Alan Mishchenko UC Berkeley ABC Extreme Mapper 29 2
Coding-CAVLC Robert K. Brayton & Alan Mishchenko ucC Berkeley ABC Extreme Mapper 107 ]
Decoder Robert K. Brayton & Alan Mishchenko ucC Berkeley ABC Extreme Mapper 272 2
i2c controller Robert K. Brayton & Alan Mishchenko UC Berkeley ABC Extreme Mapper 230 7
Int2float Robert K. Brayton & Alan Mishchenko UC Berkeley ABC Extreme Mapper 3 4
Mem ctrl Robert K. Brayton & Alan Mishchenko ucC Berkeley ABC Extreme Mapper 2399 23
Priority encoder Robert K. Brayton & Alan Mishchenko ucC Berkeley ABC Extreme Mapper 118 27
Lookahead XY router | Robert K. Brayton & Alan Mishchenko UC Berkeley ABC Extreme Mapper 53 6
Voter Robert K. Brayton & Alan Mishchenko UC Berkeley ABC Extreme Mapper 1521 18

[1] Amaru, et al., http://Isi.epfl.ch/benchmarks




Common Restructuring Techniques

» Heuristically shrink logic network by logic rewriting (e.g., [1])

f=a(de)c f=(de)(ac)

d eac

d e balance

[1] Mishchenko, Chatterjee, Brayton, DAC’06



Common Restructuring Techniques

» Heuristically shrink logic network by logic rewriting (e.g., [1])

f=a(de)c f=(de)(ac) g=(ab)(ac) g=abc
b, A %
a — —_—
b | a
/ \/ \
¢ deac abac b c
d e balance rewrite

[1] Mishchenko, Chatterjee, Brayton, DAC’06



Typical Pre-mapping Transformation Sequence

» Atypical area-minimizing script in ABCI: [1] Mishchenko, et al., TCAD'07
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Typical Pre-mapping Transformation Sequence

» Atypical area-minimizing script in ABCI: [1] Mishchenko, et al., TCAD'07
balance — rewrite — balance — rewrite

Initial and-inverter graph for xor5

rewrite

technology
mapping

Key rationale: smaller logic network =—> smaller post-mapping circuit
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Our study:

smaller logic network not necessarily leads to smaller post-mapping circuit
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PIMap: A Parallelized Iterative Improvement
Approach to LUT-Based Tech Mapping

» Couple mapping and logic transformation
— Close the gap between logic optimization and tech mapping
— Incrementally improve area
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PIMap: A Parallelized Iterative Improvement
Approach to LUT-Based Tech Mapping

» Couple mapping and logic transformation
— Close the gap between logic optimization and tech mapping
— Incrementally improve area

 ——

Technology mapping

Logic transformation
———

» Effective partitioning and parallelization technique
— Improve both runtime and design quality

thresd 1 thread 2
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PIMap Technique: Iterative Area Minimization

Intuition: use mapping result to
quide randomly proposed logic
transformations
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PIMap Technique: Iterative Area Minimization

Intuition: use mapping result to
quide randomly proposed logic
transformations

Transformation #1
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PIMap Technique: Iterative Area Minimization

Intuition: use mapping result to
quide randomly proposed logic
transformations

Transforrnation #1
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PIMap Technique: Iterative Area Minimization

Intuition: use mapping result to
quide randomly proposed logic
transformations

Transforrnation #1 Transforrnatlon #2
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PIMap Technique: Iterative Area Minimization

Intuition: use mapping result to LA S AGASA _ .
quide randomly proposed logic PR

transformations ..
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» No circuit partitioning ——No partition
— Long runtime per trial
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» No circuit partitioning —4—No partition
. . 16 partitions, 5 LUTs/partition
— Long runtime per trial
_ : ini 3900
Easily stuck at local minimum EPFL design: div
I - I 1t 3800 ‘i
» Fine-grained partition ) ~e—y . .
— Similar concept to exact synthesis 5 3700
. . @)
— Fast runtime per trial = 3600
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Partitioning Schemes

» No circuit partitioning —4—No partition
16 partitions, 5 LUTs/partition

- Long runtime per trial - —e—16 partitions, 100 LUTs/partition
- EaS|I3{ stuck at I.o_cal minimum 3900 EPFL design: div
» Fine-grained partition ) 3800 Mg o
— Similar concept to exact synthesis 5 3700
— Fast runtime per trial g 3600
_ Slow progress overall ~ 2500
» Coarse-grained partition 3400

— Balance runtime and solution quality .,

— Repartition between trials to further
improve quality

O 5 10 15 20 25 30 35 40
Trial
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PIMap Technique: Partitioning and Parallelization

Initial mapping to LUT Subagraph extraction lterative area minimization Recombine subgraphs

Mapped netlist
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PIMap Technique: Partitioning and Parallelization

Initial mappino to LUT  Subgraph extraction lierative area minimization Recombine subographs

B Nodes in subgraph 1
AIG of design b9 M Nodes in subgraph 2
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PIMap Technique: Partitioning and Parallelization

Subgraph extraction

B Nodes in subgraph 1

“ AIG of design b9 | W Nodes in subgraph 2 Mapped netlist
N — NN —
5 34 LUTs
15 LUTs / \
— S 15 LUTs
“_ R[PC ! H § )| LR ] RN vy - W N
L )t “i-.-_i.- R |
Subgraph 1 Subgraph 2
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PIMap Technique: Partitioning and Parallelization

lterative area minimization
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PIMap Technique: Partitioning and Parallelization

Initial mapping to LUT  Suboraph extraction lterative area minimization Recombine subgraphs

15 LUTs
MW MW W
MWW W
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PIMap Technique: Repartition

Initial mapping to LUT Subgraph extraction Iterative area minimization Recombine subgraphs

Optlmlzed deS|gn after trlal 1

AAARNT— [0 T ——F— 33 LUTs

Repartition using different seeds

35



PIMap Technique: Repartition

Optimized design after trial 1

== 33 LUTS

Repartition using different seeds » Iterative area minimization

Recombine subgraphs
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PIMap Technique: Repartition

Optimized design after trial 1

p— S e S 33 LUTs

Repartition using different seeds » Iterative area minimization

@ One trial

Recombine subgraphs
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PIMap Overall Flow

Design C1908 from the MCNC benchmark suite
5 trials in total

LUT Count = 89
_—Area Improvement = 0%

Initial Design

Observations:
1. Partition boundaries vary between trials
—> Uncover better structure
2. Overall network structure differ significantly between trials
—> Discover a wide range of designs

38



Experimental Setup

PIMap toolchain

ABC's tech
mapper

ABC’s logic
transformations:
balance, rewrite, refactor

lterative area
minimization
routine

Subgraph extraction
and parallelization
control
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Experimental Setup

PIMap toolchain Benchmarks
’ ABC's logic Benchmark Initial design

ABC'’s tech transformations: 10 largest | pre-synthesized using

mapper balance, rewrite, refactor MCNC ABC's compress2rs

designs 1] script

lterative area Subgraph extraction EPEL best-known mapping
minimization and parallelization arithmetic designs

routine control designs [2

[1] Yang, MCNC’91
[2] Amaru, et al., http://Isi.epfl.ch/benchmarks
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Experimental Setup

PIMap toolchain Benchmarks
’ ABC's logic Benchmark Initial design

ABC'’s tech transformations: 10 largest | pre-synthesized using

mapper balance, rewrite, refactor MCNC ABC's compress2rs

designs M script

lterative area Subgraph extraction EPEL best-known mapping
minimization and parallelization arithmetic designs

routine control designs 2

[1] Yang, MCNC’91
[2] Amaru, et al., http://Isi.epfl.ch/benchmarks

Setup

Configuration

40 trials, 100 iterations of area minimization per trial

Partitioning

up to 16 subgraphs, each with up to 100 LUTs

Computing resource | up to 8 machines, each with a quad-core Xeon processor
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Unconstrained Area Minimization

Best-known results

100%
§ 95%
= 90%
O
N 85%
<
£ 80%
o
Z  15%

70%

designname adder shifter divisor hyp log2 ~max mult sine sqrt  square average

(initial LUT count) (201)  (512) (3813) (44635) (7344) (532) (5681) (1347) (3286) (3800)

Initial design ™5 trials ™10 trials ™40 trials

» Initial design: best-known results from EPFL record
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Unconstrained Area Minimization

Best-known results

14% improvement

(3800 to 3281 LUTS) 7 % 'mpfovement

100%

95%
90%
85%
80%
75%
70%

designname adder shifter divisor hyp log2 ~max mult sine sqrt  square average
(initial LUT count) (201) (512) (3813) (44635) (7344) (532) (5681) (1347) (3286) (3800)

Normalized area

Initial design ™5 trials ™10 trials ™40 trials
» Initial design: best-known results from EPFL record

» Area improvements
— EPFL: 7% on average, up to 14%
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Unconstrained Area Minimization
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designname adder shifter divisor| hyp log2 ~max mult sine sqrt  square average
(initial LUT count) (201)  (512) (3813) (44635) (7344) (532) (5681) (1347) (3286) (3800)

Normalized area

Initial design ™5 trials ™10 trials ™40 trials
» Initial design: best-known results from EPFL record
» Area improvements

— EPFL: 7% on average, up to 14%
— Can effectively handle very large circuit (~44k LUTS)
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Unconstrained Area Minimization

100%
95%
90%
85%
80%
75%

70%
design name
(initial LUT count)

Normalized area

adder
(201)

shifter divisor

(512)

(3813)

hyp
(44635)

log2 max  mult sine sqrt  square average
(7344) (532) (5681) (1347) (3286) (3800)

Initial design ™5 trials ™10 trials ™40 trials

Initial design: best-known results from EPFL record

Area improvements

— EPFL: 7% on average, up to 14%
— Can effectively handle very large circuit (~44k LUTS)

benchmark suite

Also able to improve all 10 control-intensive designs in EPFL
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LUT Count vs. Gate Count Reduction

Normalized Node Count
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LUT Count vs. Gate Count Reduction

Verified:
post-mapping area does not necessarily correlate with pre-mapping area

div log2
1.04 1.16 ¢
1.12
1
1.08
£ 0.9 1.04
)
) 1
O 092
8 0.96
o 0.8 ' ' ' 0.92 ' ' '
Z 0 10 20 30 40 0 10 20 30 40
©
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= 1.16 1.1
o 1.12
§ ' 1.06 |
e) 1.08
Z 104 102 r/ -m-LUT Count
1 008 I\ -e-Gate Count
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Subgraph Size vs. Runtime

» Tradeoff between runtime vs. progress per trial
— Optimal subgraph size is around 100 LUTs

1 -

O \
g 08 K \/
§ 0.6 \
04 e
% oa |\
N 04t /
= Ny
S 02t T
(@]
zZ
0

0 100 200 300 400 500 600
Subgraph Size
——div —+log2 multiplier square
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Depth Constrained Area Minimization

>

Constraint: no depth increase compared to initial design
— Initial designs generated by ABC’s depth-minimizing resyn2 script
-~ In PIMap, only accept designs within depth constraint after each trial
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Depth Constrained Area Minimization

» Constraint: no depth increase compared to initial design

— Initial designs generated by ABC’s depth-minimizing resyn2 script

-~ In PIMap, only accept designs within depth constraint after each trial
» Area improvements under depth constraint

- 11% on average, up to 30%
11% improvement

100%

95%
90%
85%
80%
75%
70%
o AR A
60%

designname alu4 apex2 apex4 des ex1010 ex5p misex3 pdc seq spla average
(initial LUT count/depth) (511/5) (674/6) (588/5) (818/5) (655/5) (351/5) (443/5) (1431/7) (693/5) (1392/7)

Initial design ™5 trials ™10 trials ™40 trials

Normalized area
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Area Reduction under a Tight Runtime Limit

» In use cases with tight runtime budget
— Use fewer number of trials and fewer iterations per trial
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Area Reduction under a Tight Runtime Limit

» In use cases with tight runtime budget
— Use fewer number of trials and fewer iterations per trial

— PIMap still able to improve most of the best-known results of EPFL
benchmark designs

Area reduction using PIMap with tight runtime limit
Designs  Best-known PIMap

Adder 201 197

Shifter 512 512

Divisor 3813 3787 Runtime limit:
Hyp 44635 44635 10 seconds
Log2 7344 7305
Max 532 526
Mult 5681 5594
Sine 1347 1309
Sqrt 3286 3279

square 3800 3675
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Conclusions

» Circuit area before/after mapping does not necessarily correlate
» Stochastic mapping-in-the-loop approach for area minimization
»  Sub-circuit extraction and parallelization for runtime reduction

» Up to 14% and 7% on average over the best-known records for the
EPFL arithmetic benchmark suite

» Future work: depth minimization in tech mapping
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