
A Parallelized Iterative Improvement Approach to
Area Optimization for LUT-Based Technology Mapping

Gai Liu and Zhiru Zhang

Computer Systems Lab
Electrical and Computer Engineering

Cornell University

PIMap

▸ Technology mapping is
an essential step in
FPGA CAD flow

– Dictates the design area
(i.e., number of LUTs)

– Large impact on timing
of the final design

Technology Mapping for FPGAs

RTL elaboration

Logic synthesis

Technology mapping

Placement and routing

Bitstream generation

2

A typical FPGA CAD flow

▸ Cover a gate-level logic network
using LUTs

– K-input LUT (k-LUT) can
implement any k-input 1-output
combinational logic network

3

Technology Mapping for FPGAs

i3 i5i1 i2

o1

o2

o4

o3

i4

▸ Cover a gate-level logic network
using LUTs

– K-input LUT (k-LUT) can
implement any k-input 1-output
combinational logic network

3

Technology Mapping for FPGAs

i3 i5i1 i2

o1

o2

o4

o3

i4

▸ Cover a gate-level logic network
using LUTs

– K-input LUT (k-LUT) can
implement any k-input 1-output
combinational logic network

– This work focuses on
combinational circuit

3

Technology Mapping for FPGAs

i3 i5i1 i2

o1

o2

o4

o3

i4

▸ Cover a gate-level logic network
using LUTs

– K-input LUT (k-LUT) can
implement any k-input 1-output
combinational logic network

– This work focuses on
combinational circuit

▸ Quality metrics for technology
mapping

– Area: number of LUTs needed
– Depth: longest path from PI to

PO in # of LUTs

3

Technology Mapping for FPGAs

i3 i5i1 i2

o1

o2

o4

o3

i4

▸ Case 1: no logic restructuring

4

Tech Mapping for Area is a Hard Problem

▸ Case 1: no logic restructuring

4

Tech Mapping for Area is a Hard Problem

ca b

o1 o2

Goal: map to 3-input LUTs
a

▸ Case 1: no logic restructuring

4

Tech Mapping for Area is a Hard Problem

ca b

o1 o2

Goal: map to 3-input LUTs
a

▸ Case 1: no logic restructuring
– Already NP-hard [1]

4

Tech Mapping for Area is a Hard Problem

ca b

o1 o2

Goal: map to 3-input LUTs
a

[1] Farrahi and Sarrafzadeh, TCAD’02

▸ Case 1: no logic restructuring
– Already NP-hard [1]

▸ Case 2: with logic restructuring

4

Tech Mapping for Area is a Hard Problem

ca b

o1 o2

Goal: map to 3-input LUTs
a a c

o2

b c

a

o1

[1] Farrahi and Sarrafzadeh, TCAD’02

▸ Case 1: no logic restructuring
– Already NP-hard [1]

▸ Case 2: with logic restructuring

4

Tech Mapping for Area is a Hard Problem

ca b

o1 o2

Goal: map to 3-input LUTs
a a c

o2

b c

a

o1

[1] Farrahi and Sarrafzadeh, TCAD’02

▸ Case 1: no logic restructuring
– Already NP-hard [1]

▸ Case 2: with logic restructuring
– Even harder to find optimal solution
– Existing approach: heuristically transform logic network for better

mapping quality

4

Tech Mapping for Area is a Hard Problem

ca b

o1 o2

Goal: map to 3-input LUTs
a a c

o2

b c

a

o1

[1] Farrahi and Sarrafzadeh, TCAD’02

▸ Case 1: no logic restructuring
– Already NP-hard [1]

▸ Case 2: with logic restructuring
– Even harder to find optimal solution
– Existing approach: heuristically transform logic network for better

mapping quality

4

Tech Mapping for Area is a Hard Problem

ca b

o1 o2

Goal: map to 3-input LUTs
a

Focus of this work

a c

o2

b c

a

o1

[1] Farrahi and Sarrafzadeh, TCAD’02

5

Representative Academic Mappers

Chortle

DAGMap

FlowMap

CutMap
DAOMap

K and L
IMap

ABC Map

Exact
synthesis

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1990 1994 1998 2002 2006 2010 2014 2018

N
or

m
al

iz
ed

 a
re

a

Year

Chortle: Francis, et al., DAC’90
DAGMap: Chen, et al., DT’92
FlowMap: Cong and Ding, TCAD’94

CutMap: Cong and Hwang, FPGA’95
DAOMap: Chen and Cong, ICCAD’04
K and L: Kao and Lai, TDAES’05

Imap: Manohararajah, et al., TCAD’06
ABC Map: Mishchenko, et al., TCAD’07
Exact synthesis: Haaswijk, et al., ASPDAC’17

Average area reduction for a set of MCNC benchmarks

6

Representative Academic Mappers

Chortle

DAGMap

FlowMap

CutMap
DAOMap

K and L
IMap

ABC Map

Exact
synthesis

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1990 1994 1998 2002 2006 2010 2014 2018

N
or

m
al

iz
ed

 a
re

a

Year

Chortle: Francis, et al., DAC’90
DAGMap: Chen, et al., DT’92
FlowMap: Cong and Ding, TCAD’94

CutMap: Cong and Hwang, FPGA’95
DAOMap: Chen and Cong, ICCAD’04
K and L: Kao and Lai, TDAES’05

Imap: Manohararajah, et al., TCAD’06
ABC Map: Mishchenko, et al., TCAD’07
Exact synthesis: Haaswijk, et al., ASPDAC’17

Average area reduction for a set of MCNC benchmarks

7

World Record for Area Optimization

Best LUT-6 implementation for EPFL benchmark suite [1]

[1] Amarù, et al., http://lsi.epfl.ch/benchmarks

▸ Heuristically shrink logic network by logic rewriting (e.g., [1])

8

Common Restructuring Techniques

a
b

c

d e

b

d e ca
balance

[1] Mishchenko, Chatterjee, Brayton, DAC’06

f=a(de)c f=(de)(ac)

▸ Heuristically shrink logic network by logic rewriting (e.g., [1])

8

Common Restructuring Techniques

a
b

c

d e

b

d e ca
balance

a ca b b c

a

rewrite

[1] Mishchenko, Chatterjee, Brayton, DAC’06

f=a(de)c g=(ab)(ac) g=abcf=(de)(ac)

▸ A typical area-minimizing script in ABC[1]:

9

Typical Pre-mapping Transformation Sequence

balance rewrite balance rewrite

[1] Mishchenko, et al., TCAD’07

▸ A typical area-minimizing script in ABC[1]:

9

Typical Pre-mapping Transformation Sequence

Initial and-inverter graph for xor5

balance rewrite balance rewrite

[1] Mishchenko, et al., TCAD’07

▸ A typical area-minimizing script in ABC[1]:

9

Typical Pre-mapping Transformation Sequence

Initial and-inverter graph for xor5

balance rewrite balance rewrite

balance rewrite

balance

rewrite

[1] Mishchenko, et al., TCAD’07

▸ A typical area-minimizing script in ABC[1]:

9

Typical Pre-mapping Transformation Sequence

Initial and-inverter graph for xor5

balance rewrite balance rewrite

balance rewrite

balance

rewrite
technology

mapping

[1] Mishchenko, et al., TCAD’07

▸ A typical area-minimizing script in ABC[1]:

9

Typical Pre-mapping Transformation Sequence

Initial and-inverter graph for xor5

balance rewrite balance rewrite

balance rewrite

balance

rewrite
technology

mapping

[1] Mishchenko, et al., TCAD’07

Key rationale: smaller logic network smaller post-mapping circuit

10

Study of (Mis)Correlation

Key rationale of previous techniques:
smaller logic network smaller post-mapping circuit

10

Study of (Mis)Correlation

Key rationale of previous techniques: ?smaller logic network smaller post-mapping circuit

10

Study of (Mis)Correlation

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 50 100 150 200 250 300 350 400

N
or

m
al

ize
d

N
od

e
Co

un
t

Iteration

Gate Count

Methodology:
generate sequence of equivalent designs

with varying gate/LUT count

Key rationale of previous techniques: ?
EPFL benchmark: div

smaller logic network smaller post-mapping circuit

11

Study of (Mis)Correlation

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 50 100 150 200 250 300 350 400

N
or

m
al

ize
d

N
od

e
Co

un
t

Iteration

Gate Count
LUT Count

EPFL benchmark: div

Methodology:
generate sequence of equivalent designs

with varying gate/LUT count

Key rationale of previous techniques: ?smaller logic network smaller post-mapping circuit

12

Study of (Mis)Correlation

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 50 100 150 200 250 300 350 400

N
or

m
al

ize
d

N
od

e
Co

un
t

Iteration

Gate Count
LUT Count

EPFL benchmark: div

Methodology:
generate sequence of equivalent designs

with varying gate/LUT count

Key rationale of previous techniques: ?smaller logic network smaller post-mapping circuit

13

Study of (Mis)Correlation

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 50 100 150 200 250 300 350 400

N
or

m
al

ize
d

N
od

e
Co

un
t

Iteration

Gate Count
LUT Count

EPFL benchmark: div

Methodology:
generate sequence of equivalent designs

with varying gate/LUT count

Key rationale of previous techniques: ?smaller logic network smaller post-mapping circuit

14

Study of (Mis)Correlation

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 50 100 150 200 250 300 350 400

N
or

m
al

ize
d

N
od

e
Co

un
t

Iteration

Gate Count
LUT Count

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400

Iteration

Gate Count
LUT Count

EPFL benchmark: div EPFL benchmark: sqrt

Key rationale of previous techniques: ?smaller logic network smaller post-mapping circuit

14

Study of (Mis)Correlation

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 50 100 150 200 250 300 350 400

N
or

m
al

ize
d

N
od

e
Co

un
t

Iteration

Gate Count
LUT Count

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400

Iteration

Gate Count
LUT Count

Our study:
smaller logic network not necessarily leads to smaller post-mapping circuit

EPFL benchmark: div EPFL benchmark: sqrt

Key rationale of previous techniques: ?smaller logic network smaller post-mapping circuit

▸ Couple mapping and logic transformation
– Close the gap between logic optimization and tech mapping
– Incrementally improve area

PIMap: A Parallelized Iterative Improvement
Approach to LUT-Based Tech Mapping

15

Logic transformation Technology mapping

▸ Couple mapping and logic transformation
– Close the gap between logic optimization and tech mapping
– Incrementally improve area

▸ Effective partitioning and parallelization technique
– Improve both runtime and design quality

PIMap: A Parallelized Iterative Improvement
Approach to LUT-Based Tech Mapping

15

thread 1 thread 2

…

Logic transformation Technology mapping

16

PIMap Technique: Iterative Area Minimization

Intuition: use mapping result to
guide randomly proposed logic

transformations

17

PIMap Technique: Iterative Area Minimization

15 LUTs

Intuition: use mapping result to
guide randomly proposed logic

transformations

18

PIMap Technique: Iterative Area Minimization

15 LUTs

Transformation #1

14 LUTs

Intuition: use mapping result to
guide randomly proposed logic

transformations

19

PIMap Technique: Iterative Area Minimization

15 LUTs

Transformation #1

14 LUTs

[1] Hastings, Biometrika’70

Metropolis-Hastings algorithm[1]:
Accept current transformation if 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 0,1 < exp(−𝛾𝛾 𝑁𝑁𝐿𝐿𝐿𝐿𝐿𝐿_𝑛𝑛𝑛𝑛𝑛𝑛

𝑁𝑁𝐿𝐿𝐿𝐿𝐿𝐿_𝑜𝑜𝑜𝑜𝑜𝑜
)

Intuition: use mapping result to
guide randomly proposed logic

transformations

20

PIMap Technique: Iterative Area Minimization

15 LUTs

Transformation #1 Transformation #2

14 LUTs 14 LUTs

[1] Hastings, Biometrika’70

Metropolis-Hastings algorithm[1]:
Accept current transformation if 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 0,1 < exp(−𝛾𝛾 𝑁𝑁𝐿𝐿𝐿𝐿𝐿𝐿_𝑛𝑛𝑛𝑛𝑛𝑛

𝑁𝑁𝐿𝐿𝐿𝐿𝐿𝐿_𝑜𝑜𝑜𝑜𝑜𝑜
)

Intuition: use mapping result to
guide randomly proposed logic

transformations

21

PIMap Technique: Iterative Area Minimization

15 LUTs

Transformation #1 Transformation #2

14 LUTs 14 LUTs

[1] Hastings, Biometrika’70

Metropolis-Hastings algorithm[1]:
Accept current transformation if 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 0,1 < exp(−𝛾𝛾 𝑁𝑁𝐿𝐿𝐿𝐿𝐿𝐿_𝑛𝑛𝑛𝑛𝑛𝑛

𝑁𝑁𝐿𝐿𝐿𝐿𝐿𝐿_𝑜𝑜𝑜𝑜𝑜𝑜
)

Intuition: use mapping result to
guide randomly proposed logic

transformations

22

PIMap Technique: Iterative Area Minimization

15 LUTs

Transformation #1 Transformation #2

…

14 LUTs 14 LUTs

[1] Hastings, Biometrika’70

Metropolis-Hastings algorithm[1]:
Accept current transformation if 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 0,1 < exp(−𝛾𝛾 𝑁𝑁𝐿𝐿𝐿𝐿𝐿𝐿_𝑛𝑛𝑛𝑛𝑛𝑛

𝑁𝑁𝐿𝐿𝐿𝐿𝐿𝐿_𝑜𝑜𝑜𝑜𝑜𝑜
)

Intuition: use mapping result to
guide randomly proposed logic

transformations

▸ No circuit partitioning
– Long runtime per trial
– Easily stuck at local minimum

Partitioning Schemes

3300

3400

3500

3600

3700

3800

3900

0 5 10 15 20 25 30 35 40

LU
T

C
ou

nt
Trial

No partition

23

EPFL design: div

▸ No circuit partitioning
– Long runtime per trial
– Easily stuck at local minimum

▸ Fine-grained partition
– Similar concept to exact synthesis
– Fast runtime per trial
– Slow progress overall

Partitioning Schemes

3300

3400

3500

3600

3700

3800

3900

0 5 10 15 20 25 30 35 40

LU
T

C
ou

nt
Trial

No partition
16 partitions, 5 LUTs/partition

24

EPFL design: div

▸ No circuit partitioning
– Long runtime per trial
– Easily stuck at local minimum

▸ Fine-grained partition
– Similar concept to exact synthesis
– Fast runtime per trial
– Slow progress overall

▸ Coarse-grained partition
– Balance runtime and solution quality
– Repartition between trials to further

improve quality

Partitioning Schemes

3300

3400

3500

3600

3700

3800

3900

0 5 10 15 20 25 30 35 40

LU
T

C
ou

nt
Trial

No partition
16 partitions, 5 LUTs/partition
16 partitions, 100 LUTs/partition

25

EPFL design: div

26

PIMap Technique: Partitioning and Parallelization

Iterative area minimizationSubgraph extraction Recombine subgraphsInitial mapping to LUT

AIG of design b9 Mapped netlist

34 LUTs

27

Iterative area minimizationSubgraph extraction Recombine subgraphsInitial mapping to LUT

AIG of design b9 Mapped netlist

34 LUTs

Nodes in subgraph 1

Nodes in subgraph 2

PIMap Technique: Partitioning and Parallelization

28

Iterative area minimizationSubgraph extraction Recombine subgraphsInitial mapping to LUT

AIG of design b9 Mapped netlist

34 LUTs

Nodes in subgraph 1

Nodes in subgraph 2

PIMap Technique: Partitioning and Parallelization

29

Iterative area minimizationSubgraph extraction Recombine subgraphsInitial mapping to LUT

AIG of design b9 Mapped netlist

34 LUTs

Nodes in subgraph 1

Nodes in subgraph 2

PIMap Technique: Partitioning and Parallelization

30

15 LUTs
15 LUTs

Iterative area minimizationSubgraph extraction Recombine subgraphsInitial mapping to LUT

AIG of design b9 Mapped netlist

34 LUTs

Nodes in subgraph 1

Nodes in subgraph 2

Subgraph 1 Subgraph 2

PIMap Technique: Partitioning and Parallelization

31

Iterative area minimizationSubgraph extraction Recombine subgraphsInitial mapping to LUT

PIMap Technique: Partitioning and Parallelization

32

14 LUTs 15 LUTs

Iterative area minimizationSubgraph extraction Recombine subgraphsInitial mapping to LUT

PIMap Technique: Partitioning and Parallelization

33

14 LUTs 15 LUTs

Iterative area minimizationSubgraph extraction Recombine subgraphsInitial mapping to LUT

PIMap Technique: Partitioning and Parallelization

34

14 LUTs 15 LUTs

Iterative area minimizationSubgraph extraction Recombine subgraphsInitial mapping to LUT

33 LUTs

PIMap Technique: Partitioning and Parallelization

35

Iterative area minimizationSubgraph extraction Recombine subgraphsInitial mapping to LUT

Repartition using different seeds

33 LUTs

Optimized design after trial 1

PIMap Technique: Repartition

36

Iterative area minimizationSubgraph extraction Recombine subgraphsInitial mapping to LUT

Repartition using different seeds Iterative area minimization

33 LUTs

Optimized design after trial 1

Recombine subgraphs

PIMap Technique: Repartition

37

Iterative area minimizationSubgraph extraction Recombine subgraphsInitial mapping to LUT

One trial

Repartition using different seeds Iterative area minimization

33 LUTs

Optimized design after trial 1

Recombine subgraphs

PIMap Technique: Repartition

38

PIMap Overall Flow

Design C1908 from the MCNC benchmark suite
5 trials in total

Observations:
1. Partition boundaries vary between trials

Uncover better structure
2. Overall network structure differ significantly between trials

Discover a wide range of designs

Experimental Setup

39

ABC’s tech
mapper

ABC’s logic
transformations:

balance, rewrite, refactor

Iterative area
minimization

routine

Subgraph extraction
and parallelization

control

PIMap toolchain

Experimental Setup

39

ABC’s tech
mapper

ABC’s logic
transformations:

balance, rewrite, refactor

Benchmark Initial design

10 largest
MCNC

designs [1]

pre-synthesized using
ABC’s compress2rs

script
EPFL

arithmetic
designs [2]

best-known mapping
designs [2]

Iterative area
minimization

routine

Subgraph extraction
and parallelization

control

PIMap toolchain Benchmarks

[1] Yang, MCNC’91
[2] Amarù, et al., http://lsi.epfl.ch/benchmarks

Experimental Setup

39

ABC’s tech
mapper

ABC’s logic
transformations:

balance, rewrite, refactor

Benchmark Initial design

10 largest
MCNC

designs [1]

pre-synthesized using
ABC’s compress2rs

script
EPFL

arithmetic
designs [2]

best-known mapping
designs [2]

Iterative area
minimization

routine

Subgraph extraction
and parallelization

control

PIMap toolchain Benchmarks

[1] Yang, MCNC’91
[2] Amarù, et al., http://lsi.epfl.ch/benchmarks

Configuration 40 trials, 100 iterations of area minimization per trial

Partitioning up to 16 subgraphs, each with up to 100 LUTs

Computing resource up to 8 machines, each with a quad-core Xeon processor

Setup

40

Unconstrained Area Minimization

▸ Initial design: best-known results from EPFL record

70%

75%

80%

85%

90%

95%

100%

adder
(201)

shifter
(512)

divisor
(3813)

hyp
(44635)

log2
(7344)

max
(532)

mult
(5681)

sine
(1347)

sqrt
(3286)

square
(3800)

average

N
or

m
al

iz
ed

 a
re

a

Initial design 5 trials 10 trials 40 trials

design name
(initial LUT count)

Best-known results

41

Unconstrained Area Minimization

70%

75%

80%

85%

90%

95%

100%

adder
(201)

shifter
(512)

divisor
(3813)

hyp
(44635)

log2
(7344)

max
(532)

mult
(5681)

sine
(1347)

sqrt
(3286)

square
(3800)

average

N
or

m
al

iz
ed

 a
re

a

Initial design 5 trials 10 trials 40 trials

design name
(initial LUT count)

Best-known results

7% improvement14% improvement
(3800 to 3281 LUTs)

▸ Initial design: best-known results from EPFL record
▸ Area improvements

– EPFL: 7% on average, up to 14%

▸ Initial design: best-known results from EPFL record
▸ Area improvements

– EPFL: 7% on average, up to 14%
– Can effectively handle very large circuit (~44k LUTs)

42

Unconstrained Area Minimization

70%

75%

80%

85%

90%

95%

100%

adder
(201)

shifter
(512)

divisor
(3813)

hyp
(44635)

log2
(7344)

max
(532)

mult
(5681)

sine
(1347)

sqrt
(3286)

square
(3800)

average

N
or

m
al

iz
ed

 a
re

a

Initial design 5 trials 10 trials 40 trials

design name
(initial LUT count)

▸ Initial design: best-known results from EPFL record
▸ Area improvements

– EPFL: 7% on average, up to 14%
– Can effectively handle very large circuit (~44k LUTs)

▸ Also able to improve all 10 control-intensive designs in EPFL
benchmark suite

42

Unconstrained Area Minimization

70%

75%

80%

85%

90%

95%

100%

adder
(201)

shifter
(512)

divisor
(3813)

hyp
(44635)

log2
(7344)

max
(532)

mult
(5681)

sine
(1347)

sqrt
(3286)

square
(3800)

average

N
or

m
al

iz
ed

 a
re

a

Initial design 5 trials 10 trials 40 trials

design name
(initial LUT count)

LUT Count vs. Gate Count Reduction

0.88
0.92
0.96

1
1.04
1.08
1.12
1.16

0 10 20 30 40

multiplier

0.9

0.94

0.98

1.02

1.06

1.1

0 10 20 30 40

square

LUT Count
Gate Count

Number of Trial

0.88

0.92

0.96

1

1.04

0 10 20 30 40

div

0.92

0.96

1

1.04

1.08

1.12

1.16

0 10 20 30 40

log2

N
or

m
al

iz
ed

 N
od

e
C

ou
nt

43

LUT Count vs. Gate Count Reduction

0.88
0.92
0.96

1
1.04
1.08
1.12
1.16

0 10 20 30 40

multiplier

0.9

0.94

0.98

1.02

1.06

1.1

0 10 20 30 40

square

LUT Count
Gate Count

Number of Trial

0.88

0.92

0.96

1

1.04

0 10 20 30 40

div

0.92

0.96

1

1.04

1.08

1.12

1.16

0 10 20 30 40

log2

N
or

m
al

iz
ed

 N
od

e
C

ou
nt

43

Verified:
post-mapping area does not necessarily correlate with pre-mapping area

▸ Tradeoff between runtime vs. progress per trial
– Optimal subgraph size is around 100 LUTs

Subgraph Size vs. Runtime

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600

N
or

m
al

iz
ed

 R
un

tim
e

Subgraph Size
div log2 multiplier square

44

45

Depth Constrained Area Minimization

▸ Constraint: no depth increase compared to initial design
– Initial designs generated by ABC’s depth-minimizing resyn2 script
– In PIMap, only accept designs within depth constraint after each trial

▸ Constraint: no depth increase compared to initial design
– Initial designs generated by ABC’s depth-minimizing resyn2 script
– In PIMap, only accept designs within depth constraint after each trial

▸ Area improvements under depth constraint
– 11% on average, up to 30%

46

Depth Constrained Area Minimization

design name
(initial LUT count/depth)

60%

65%

70%

75%

80%

85%

90%

95%

100%

alu4
(511/5)

apex2
(674/6)

apex4
(588/5)

des
(818/5)

ex1010
(655/5)

ex5p
(351/5)

misex3
(443/5)

pdc
(1431/7)

seq
(693/5)

spla
(1392/7)

average

N
or

m
al

iz
ed

 a
re

a

Initial design 5 trials 10 trials 40 trials

11% improvement

▸ In use cases with tight runtime budget
– Use fewer number of trials and fewer iterations per trial

47

Area Reduction under a Tight Runtime Limit

▸ In use cases with tight runtime budget
– Use fewer number of trials and fewer iterations per trial
– PIMap still able to improve most of the best-known results of EPFL

benchmark designs

47

Area Reduction under a Tight Runtime Limit

Area reduction using PIMap with tight runtime limit
Designs Best-known PIMap

Adder 201 197

Shifter 512 512

Divisor 3813 3787

Hyp 44635 44635

Log2 7344 7305

Max 532 526

Mult 5681 5594

Sine 1347 1309

Sqrt 3286 3279

square 3800 3675

Runtime limit:
10 seconds

▸ Circuit area before/after mapping does not necessarily correlate
▸ Stochastic mapping-in-the-loop approach for area minimization
▸ Sub-circuit extraction and parallelization for runtime reduction
▸ Up to 14% and 7% on average over the best-known records for the

EPFL arithmetic benchmark suite
▸ Future work: depth minimization in tech mapping

48

Conclusions

Chortle

DAGMap

FlowMap

CutMap

DAOMap

K and L
IMap

ABC Map

Exact
synthesis

PIMap
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1990 1994 1998 2002 2006 2010 2014 2018

N
or

m
al

iz
ed

 A
re

a

Year

	A Parallelized Iterative Improvement Approach to �Area Optimization for LUT-Based Technology Mapping
	Technology Mapping for FPGAs
	Technology Mapping for FPGAs
	Technology Mapping for FPGAs
	Technology Mapping for FPGAs
	Technology Mapping for FPGAs
	Tech Mapping for Area is a Hard Problem
	Tech Mapping for Area is a Hard Problem
	Tech Mapping for Area is a Hard Problem
	Tech Mapping for Area is a Hard Problem
	Tech Mapping for Area is a Hard Problem
	Tech Mapping for Area is a Hard Problem
	Tech Mapping for Area is a Hard Problem
	Tech Mapping for Area is a Hard Problem
	Representative Academic Mappers
	Representative Academic Mappers
	World Record for Area Optimization
	Common Restructuring Techniques
	Common Restructuring Techniques
	Typical Pre-mapping Transformation Sequence
	Typical Pre-mapping Transformation Sequence
	Typical Pre-mapping Transformation Sequence
	Typical Pre-mapping Transformation Sequence
	Typical Pre-mapping Transformation Sequence
	Study of (Mis)Correlation
	Study of (Mis)Correlation
	Study of (Mis)Correlation
	Study of (Mis)Correlation
	Study of (Mis)Correlation
	Study of (Mis)Correlation
	Study of (Mis)Correlation
	Study of (Mis)Correlation
	PIMap: A Parallelized Iterative Improvement Approach to LUT-Based Tech Mapping
	PIMap: A Parallelized Iterative Improvement Approach to LUT-Based Tech Mapping
	PIMap Technique: Iterative Area Minimization
	PIMap Technique: Iterative Area Minimization
	PIMap Technique: Iterative Area Minimization
	PIMap Technique: Iterative Area Minimization
	PIMap Technique: Iterative Area Minimization
	PIMap Technique: Iterative Area Minimization
	PIMap Technique: Iterative Area Minimization
	Partitioning Schemes
	Partitioning Schemes
	Partitioning Schemes
	PIMap Technique: Partitioning and Parallelization
	PIMap Technique: Partitioning and Parallelization
	PIMap Technique: Partitioning and Parallelization
	PIMap Technique: Partitioning and Parallelization
	PIMap Technique: Partitioning and Parallelization
	PIMap Technique: Partitioning and Parallelization
	PIMap Technique: Partitioning and Parallelization
	PIMap Technique: Partitioning and Parallelization
	PIMap Technique: Partitioning and Parallelization
	PIMap Technique: Repartition
	PIMap Technique: Repartition
	PIMap Technique: Repartition
	PIMap Overall Flow
	Experimental Setup
	Experimental Setup
	Experimental Setup
	Unconstrained Area Minimization
	Unconstrained Area Minimization
	Unconstrained Area Minimization
	Unconstrained Area Minimization
	LUT Count vs. Gate Count Reduction
	LUT Count vs. Gate Count Reduction
	Subgraph Size vs. Runtime
	Depth Constrained Area Minimization
	Depth Constrained Area Minimization
	Area Reduction under a Tight Runtime Limit
	Area Reduction under a Tight Runtime Limit
	Conclusions

