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▸ Technology mapping is 
an essential step in 
FPGA CAD flow

– Dictates the design area 
(i.e., number of LUTs)

– Large impact on timing 
of the final design

Technology Mapping for FPGAs

RTL elaboration

Logic synthesis

Technology mapping

Placement and routing

Bitstream generation
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A typical FPGA CAD flow



▸ Cover a gate-level logic network 
using LUTs

– K-input LUT (k-LUT) can 
implement any k-input 1-output 
combinational logic network
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▸ Cover a gate-level logic network 
using LUTs

– K-input LUT (k-LUT) can 
implement any k-input 1-output 
combinational logic network

– This work focuses on 
combinational circuit

▸ Quality metrics for technology 
mapping

– Area: number of LUTs needed
– Depth: longest path from PI to 

PO in # of LUTs
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▸ Case 1: no logic restructuring
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▸ Case 1: no logic restructuring
– Already NP-hard [1]

▸ Case 2: with logic restructuring
– Even harder to find optimal solution
– Existing approach: heuristically transform logic network for better 

mapping quality
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▸ Case 1: no logic restructuring
– Already NP-hard [1]

▸ Case 2: with logic restructuring
– Even harder to find optimal solution
– Existing approach: heuristically transform logic network for better 

mapping quality
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Tech Mapping for Area is a Hard Problem
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World Record for Area Optimization

Best LUT-6 implementation for EPFL benchmark suite [1]

[1] Amarù, et al., http://lsi.epfl.ch/benchmarks



▸ Heuristically shrink logic network by logic rewriting (e.g., [1])
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▸ Heuristically shrink logic network by logic rewriting (e.g., [1])
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Common Restructuring Techniques
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rewrite

[1] Mishchenko, Chatterjee, Brayton, DAC’06
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▸ A typical area-minimizing script in ABC[1]: 
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▸ A typical area-minimizing script in ABC[1]: 
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Typical Pre-mapping Transformation Sequence

Initial and-inverter graph for xor5

balance     rewrite balance rewrite

balance rewrite
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rewrite
technology 
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[1] Mishchenko, et al., TCAD’07

Key rationale: smaller logic network          smaller post-mapping circuit
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▸ Couple mapping and logic transformation
– Close the gap between logic optimization and tech mapping
– Incrementally improve area

PIMap: A Parallelized Iterative Improvement 
Approach to LUT-Based Tech Mapping 
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▸ Couple mapping and logic transformation
– Close the gap between logic optimization and tech mapping
– Incrementally improve area

▸ Effective partitioning and parallelization technique
– Improve both runtime and design quality

PIMap: A Parallelized Iterative Improvement 
Approach to LUT-Based Tech Mapping 
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PIMap Technique: Iterative Area Minimization 
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▸ No circuit partitioning
– Long runtime per trial
– Easily stuck at local minimum
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▸ No circuit partitioning
– Long runtime per trial
– Easily stuck at local minimum

▸ Fine-grained partition
– Similar concept to exact synthesis
– Fast runtime per trial
– Slow progress overall

▸ Coarse-grained partition
– Balance runtime and solution quality
– Repartition between trials to further 

improve quality 
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Iterative area minimizationSubgraph extraction Recombine subgraphsInitial mapping to LUT

One trial

Repartition using different seeds Iterative area minimization

33 LUTs

Optimized design after trial 1

Recombine subgraphs

PIMap Technique: Repartition
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PIMap Overall Flow

Design C1908 from the MCNC benchmark suite
5 trials in total

Observations:
1. Partition boundaries vary between trials

Uncover better structure
2. Overall network structure differ significantly between trials

Discover a wide range of designs
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Configuration 40 trials, 100 iterations of area minimization per trial

Partitioning up to 16 subgraphs, each with up to 100 LUTs

Computing resource up to 8 machines, each with a quad-core Xeon processor

Setup



40

Unconstrained Area Minimization

▸ Initial design: best-known results from EPFL record
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▸ Initial design: best-known results from EPFL record
▸ Area improvements

– EPFL: 7% on average, up to 14%
– Can effectively handle very large circuit (~44k LUTs)

▸ Also able to improve all 10 control-intensive designs in EPFL 
benchmark suite
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Unconstrained Area Minimization
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LUT Count vs. Gate Count Reduction
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Verified: 
post-mapping area does not necessarily correlate with pre-mapping area



▸ Tradeoff between runtime vs. progress per trial
– Optimal subgraph size is around 100 LUTs

Subgraph Size vs. Runtime
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Depth Constrained Area Minimization

▸ Constraint: no depth increase compared to initial design
– Initial designs generated by ABC’s depth-minimizing resyn2 script
– In PIMap, only accept designs within depth constraint after each trial



▸ Constraint: no depth increase compared to initial design
– Initial designs generated by ABC’s depth-minimizing resyn2 script
– In PIMap, only accept designs within depth constraint after each trial

▸ Area improvements under depth constraint
– 11% on average, up to 30%
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Depth Constrained Area Minimization
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▸ In use cases with tight runtime budget
– Use fewer number of trials and fewer iterations per trial
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▸ In use cases with tight runtime budget
– Use fewer number of trials and fewer iterations per trial
– PIMap still able to improve most of the best-known results of EPFL 

benchmark designs
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Area Reduction under a Tight Runtime Limit

Area reduction using PIMap with tight runtime limit
Designs Best-known PIMap

Adder 201 197

Shifter 512 512

Divisor 3813 3787

Hyp 44635 44635

Log2 7344 7305

Max 532 526

Mult 5681 5594

Sine 1347 1309

Sqrt 3286 3279

square 3800 3675

Runtime limit: 
10 seconds



▸ Circuit area before/after mapping does not necessarily correlate
▸ Stochastic mapping-in-the-loop approach for area minimization
▸ Sub-circuit extraction and parallelization for runtime reduction
▸ Up to 14% and 7% on average over the best-known records for the 

EPFL arithmetic benchmark suite
▸ Future work: depth minimization in tech mapping
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