PIMap

A Parallelized Iterative Improvement Approach to
Area Optimization for LUT-Based Technology Mapping

Gal Liu and Zhiru Zhang

Computer Systems Lab
Electrical and Computer Engineering
Cornell University

S
A) . . .=
‘| (==))7 Cornell University CSL :
=) o

Technology Mapping for FPGASs

A typical FPGA CAD flow

» Technology mapping is RTL elaboration
an essential step in
FPGA CAD flow v

Logic synthesis

— Dictates the design area
(i.e., number of LUTSs) '
_ Large impact on timing Technology mapping
of the final design

\ 4

Placement and routing

\ 4

Bitstream generation

Technology Mapping for FPGASs

» Cover a gate-level logic network i1i2 i3 i4i5
using LUTs o
— K-input LUT (k-LUT) can
implement any k-input 1-output
combinational logic network O3

Technology Mapping for FPGASs

» Cover a gate-level logic network
using LUTs
— K-input LUT (k-LUT) can
implement any k-input 1-output
combinational logic network

L ———

Technology Mapping for FPGASs

» Cover a gate-level logic network i1 12
using LUTs
— K-input LUT (k-LUT) can
implement any k-input 1-output
combinational logic network

— This work focuses on
combinational circuit

’———————— -

L ———

Technology Mapping for FPGASs

» Cover a gate-level logic network
using LUTs
— K-input LUT (k-LUT) can
implement any k-input 1-output
combinational logic network
— This work focuses on
combinational circuit
» Quality metrics for technology
mapping
— Area: number of LUTs needed

— Depth: longest path from PI to
PO in # of LUTs

'-——————— -

-------ﬁ

L ———

Tech Mapping for Area is a Hard Problem

» Case 1: no logic restructuring

Tech Mapping for Area is a Hard Problem

» Case 1: no logic restructuring

Goal: map to 3-input LUTs
ab ac

Tech Mapping for Area is a Hard Problem

» Case 1: no logic restructuring

Goal: map to 3-input LUTs
ab ac

Tech Mapping for Area is a Hard Problem

» Case 1: no logic restructuring
— Already NP-hard 1]

Goal: map to 3-input LUTs
ab ac

[1] Farrahi and Sarrafzadeh, TCAD’02

Tech Mapping for Area is a Hard Problem

» Case 1: no logic restructuring
— Already NP-hard 1]

» Case 2: with logic restructuring

Goal: map to 3-input LUTs
ab ac

0, 0,

[1] Farrahi and Sarrafzadeh, TCAD’02

Tech Mapping for Area is a Hard Problem

» Case 1: no logic restructuring
— Already NP-hard 1]

» Case 2: with logic restructuring

Goal: map to 3-input LUTs
ab ac

0, 0,

[1] Farrahi and Sarrafzadeh, TCAD’02

Tech Mapping for Area is a Hard Problem

» Case 1: no logic restructuring
— Already NP-hard 1]
» Case 2: with logic restructuring
— Even harder to find optimal solution

— Existing approach: heuristically transform logic network for better
mapping quality

Goal: map to 3-input LUTs
ab ac

0, 0,

[1] Farrahi and Sarrafzadeh, TCAD’02

Tech Mapping for Area is a Hard Problem

» Case 1: no logic restructuring
— Already NP-hard 1]

» | Case 2: with logic restructuring {7 Focus of this work
— Even harder to find optimal solution

— Existing approach: heuristically transform logic network for better
mapping quality

Goal: map to 3-input LUTs
ab ac

0, 0,

[1] Farrahi and Sarrafzadeh, TCAD’02

Representative Academic Mappers

Average area reduction for a set of MCNC benchmarks

1 Chortle
0.9
©
dos
@©
§ 0.7 FlowMap
S 0.6
=
@)
2 05 IMap Exact
04 DAOMap synthesis
—0
03 ABC Map
1990 1994 1998 2002 2006 2010 2014 2018
Year
Chortle: Francis, et al., DAC’90 CutMap: Cong and Hwang, FPGA’95 Imap: Manohararajah, et al., TCAD’06
DAGMap: Chen, et al., DT’92 DAOMap: Chen and Cong, ICCAD’04 ABC Map: Mishchenko, et al., TCAD’07

FlowMap: Cong and Ding, TCAD’94 K and L: Kao and Lai, TDAES’05 Exact synthesis: Haaswijk, et al., ASPDAC’17

Representative Academic Mappers

Average area reduction for a set of MCNC benchmarks

1 Chortle
0.9
©
dos
@©
§ 0.7 FlowMap
S 0.6
=
@)
> 0.5 IMap
0.4 DAOMap
03 ABC Map
1990 1994 1998 2002 2006 2010 2014 2018
Year
Chortle: Francis, et al., DAC’90 CutMap: Cong and Hwang, FPGA’95 Imap: Manohararajah, et al., TCAD’06
DAGMap: Chen, et al., DT’92 DAOMap: Chen and Cong, ICCAD’04 ABC Map: Mishchenko, et al., TCAD’07

FlowMap: Cong and Ding, TCAD’94 K and L: Kao and Lai, TDAES’05 Exact synthesis: Haaswijk, et al., ASPDAC’17

World Record for Area Optimization

Best LUT-6 implementation for EPFL benchmark suite [1]

Best results for LUT6 count

Arithmetic
Benchmark name Author's name Author's affiliation Synthesis Method Size Depth
Adder Robert K. Brayton & Alan Mishchenko UC Berkeley ABC Extreme Mapper 201 73
Barrel Shifter Robert K. Brayton & Alan Mishchenko ucC Berkeley ABC Extreme Mapper 512 4
Divisor Robert K. Brayton & Alan Mishchenko ucC Berkeley ABC Extreme Mapper 3813 1542
H‘,prTEHUSE FEF FEF FEF FEF FEF
Log2 Robert K. Brayton & Alan Mishchenko UC Berkeley ABC Extreme Mapper 7344 142
Max Robert K. Brayton & Alan Mishchenko ucC Berkeley ABC Extreme Mapper 532 192
Multiplier Robert K. Brayton & Alan Mishchenko ucC Berkeley ABC Extreme Mapper 5681 120
Sine Robert K. Brayton & Alan Mishchenko UC Berkeley ABC Extreme Mapper 1347 62
Sgquare-root Robert K. Brayton & Alan Mishchenko UC Berkeley ABC Extreme Mapper 3286 1180
Square Robert K. Brayton & Alan Mishchenko uc Berkeley ABC Extreme Mapper 3800 116
Random-control
Benchmark name Author's name Author's affiliation Synthesis Method Size Depth
Round-robin arbiter | Robert K. Brayton & Alan Mishchenko UC Berkeley ABC Extreme Mapper 429 24
ALU ctrl Robert K. Brayton & Alan Mishchenko UC Berkeley ABC Extreme Mapper 29 2
Coding-CAVLC Robert K. Brayton & Alan Mishchenko ucC Berkeley ABC Extreme Mapper 107]
Decoder Robert K. Brayton & Alan Mishchenko ucC Berkeley ABC Extreme Mapper 272 2
i2c controller Robert K. Brayton & Alan Mishchenko UC Berkeley ABC Extreme Mapper 230 7
Int2float Robert K. Brayton & Alan Mishchenko UC Berkeley ABC Extreme Mapper 3 4
Mem ctrl Robert K. Brayton & Alan Mishchenko ucC Berkeley ABC Extreme Mapper 2399 23
Priority encoder Robert K. Brayton & Alan Mishchenko ucC Berkeley ABC Extreme Mapper 118 27
Lookahead XY router | Robert K. Brayton & Alan Mishchenko UC Berkeley ABC Extreme Mapper 53 6
Voter Robert K. Brayton & Alan Mishchenko UC Berkeley ABC Extreme Mapper 1521 18

[1] Amaru, et al., http://Isi.epfl.ch/benchmarks

Common Restructuring Techniques

» Heuristically shrink logic network by logic rewriting (e.g., [1])

f=a(de)c f=(de)(ac)

d eac

d e balance

[1] Mishchenko, Chatterjee, Brayton, DAC’06

Common Restructuring Techniques

» Heuristically shrink logic network by logic rewriting (e.g., [1])

f=a(de)c f=(de)(ac) g=(ab)(ac) g=abc
b, A %
a — —_—
b | a
/ \/ \
¢ deac abac b c
d e balance rewrite

[1] Mishchenko, Chatterjee, Brayton, DAC’06

Typical Pre-mapping Transformation Sequence

» Atypical area-minimizing script in ABCI: [1] Mishchenko, et al., TCAD'07

balance — rewrite — balance — rewrite

Typical Pre-mapping Transformation Sequence

» Atypical area-minimizing script in ABCUI: [1] Mishchenko, et al., TCAD'07
balance — rewrite — balance — rewrite

Initial and-inverter graph for xor5

Typical Pre-mapping Transformation Sequence

» Atypical area-minimizing script in ABCI: [1] Mishchenko, et al., TCAD'07
balance — rewrite — balance — rewrite

Initial and-inverter graph for xor5

rewrite
—p

Typical Pre-mapping Transformation Sequence

» Atypical area-minimizing script in ABCI: [1] Mishchenko, et al., TCAD'07
balance — rewrite — balance — rewrite

Initial and-inverter graph for xor5

rewrite
—p

technology
mapping

Typical Pre-mapping Transformation Sequence

» Atypical area-minimizing script in ABCI: [1] Mishchenko, et al., TCAD'07
balance — rewrite — balance — rewrite

Initial and-inverter graph for xor5

rewrite

technology
mapping

Key rationale: smaller logic network =—> smaller post-mapping circuit

Study of (Mis)Correlation

Key rationale of previous technigues:
smaller logic network —> smaller post-mapping circuit

10

Study of (Mis)Correlation

Key rationale of previous technigues:
smaller logic network —> smaller post-mapping circuit

?

10

Study of (Mis)Correlation

Key rationale of previous technigues: 9
smaller logic network —» smaller post-mapping circuit =

. EPFL benchmark: div

09 f
0.8 Methodology:
0.7 L generate sequence of equivalent designs

0.6 | Gate Count with varying gate/LUT count

05 r

03 r
0.2

Normalized Node Count

0 50 100 150200 250 300 350 400
lteration

10

Study of (Mis)Correlation

Key rationale of previous technigues: 9
smaller logic network —» smaller post-mapping circuit =

. EPFL benchmark: div

0.9

0.8 Methodology:

0.7 generate sequence of equivalent designs
06 Gate Count with varying gate/LUT count

05 - | UT Count

04 r

Normalized Node Count

0.2

0 50 100 150200 250 300 350 400
lteration

11

Study of (Mis)Correlation

Key rationale of previous technigues: 9
smaller logic network —» smaller post-mapping circuit =

. EPFL benchmark: div

0.9
0.8 Methodology:

0.7 generate sequence of equivalent designs
0.6 L Gate Count with varying gate/LUT count
—LUT Count

05 r
04 r
03 r
0.2

Normalized Node Count

0 50 100 150200 250 300 350 400
lteration

12

Study of (Mis)Correlation

Key rationale of previous technigues: 9
smaller logic network —» smaller post-mapping circuit =

. EPFL benchmark: div

0.9
0.8 Methodology:

0.7 generate sequence of equivalent designs
0.6 L Gate Count with varying gate/LUT count
—LUT Count

05 r
04 r
03 r
0.2

Normalized Node Count

0 50 100 150200 250 300 350 400
lteration

13

Study of (Mis)Correlation

Key rationale of previous technigues: 9
smaller logic network —» smaller post-mapping circuit =

. EPFL benchmark: div . EPFL benchmark: sqrt

c
8 0.9 0.9
o 0.8 0.8
p :
< 0.7
206 | Gate Count | 07 r Gate Count
© — - —
305 | LUT Count 0.6 LUT Count
© 0.4
£
(@) 03 B]
Z 02 1 1 1 1 1 1 1 03 1 1 1 1 1 1 1
0 50 100 150200 250 300 350 400 0 50 100150 200 250 300 350 400

Iteration [teration

14

Study of (Mis)Correlation

Key rationale of previous technigues: 9
smaller logic network —» smaller post-mapping circuit =

. EPFL benchmark: div . EPFL benchmark: sqrt

c
8 0.9 0.9
o 0.8 0.8
p)
- 0.7
206 | Gate Count | 07 r Gate Count
© — - —
305 | LUT Count 0.6 LUT Count
© 0.4
£
o 03 B]
Z 02 1 1 1 1 1 1 1 03 1 1 1 1 1 1 1
0 50 100 150200 250 300 350 400 0 50 100 150 200 250 300 350 400
Iteration [teration
Our study:

smaller logic network not necessarily leads to smaller post-mapping circuit

14

PIMap: A Parallelized Iterative Improvement
Approach to LUT-Based Tech Mapping

» Couple mapping and logic transformation
— Close the gap between logic optimization and tech mapping
— Incrementally improve area

 ——

Logic transformation Technology mapping

—

PIMap: A Parallelized Iterative Improvement
Approach to LUT-Based Tech Mapping

» Couple mapping and logic transformation
— Close the gap between logic optimization and tech mapping
— Incrementally improve area

 ——

Technology mapping

Logic transformation
———

» Effective partitioning and parallelization technique
— Improve both runtime and design quality

thresd 1 thread 2

o=

PIMap Technique: Iterative Area Minimization

Intuition: use mapping result to
quide randomly proposed logic
transformations

16

PIMap Technique: Iterative Area Minimization

Intuition: use mapping result to
quide randomly proposed logic
transformations

AN AN Fal B

7 NN e AR\ & e

&

.‘,

¢ NEnee | vee & we

e e ee e 8/ /e
SN 7 S S S ¥
S, -

17

PIMap Technique: Iterative Area Minimization

Intuition: use mapping result to
quide randomly proposed logic
transformations

Transformation #1

s &

s ,' uwc ws'e w

|] | 3 < / 9/

PIMap Technique: Iterative Area Minimization

Intuition: use mapping result to
quide randomly proposed logic
transformations

Transforrnation #1

FA AN A JA e T T

N 78" WA 7 S/ VDY s 6& N AR
ey 7 ‘60‘680’ e ALY i“"‘. > Y 1Y
N %8 8/ o4 6 LIRCER S L7 B FAR
N 8} R e ‘ RV e S
é Y Ry -
15 LUTs
A s 14 LUTs —
B L § s G R W W W

Metropolis-Hastings algorithm!:

Accept current transformation if rand(0,1) < exp(— y—LUT new
LUT_old

[1] Hastings, Biometrika’70 19

PIMap Technique: Iterative Area Minimization

Intuition: use mapping result to
quide randomly proposed logic
transformations

Transforrnation #1 Transforrnatlon #2

e e iii'e e uewr *c e b §6]

LR N d I L Zean W VY 11 6 o vfb & & & o o &)
E E.G ‘v > ‘ RY T S S el
i o d i Y . # | =2 3 A (2

' L8 - ‘ E%d

| | Vv

A 14 LUTs P 14 LUTs o
D) T e | O 'ﬁ ‘i i ‘- P S
B | S faan N P - W ‘ﬁ” - ~-I""i o
— .

r l

Metropolis-Hastings algorithm!:

Accept current transformation if rand(0,1) < exp(— y—LUT new
LUT_old

[1] Hastings, Biometrika’70 20

PIMap Technique: Iterative Area Minimization

Intuition: use mapping result to
quide randomly proposed logic
transformations

Transforrnation #1 Transforrnatlon #2

e e iii'e e uewr *c e b §6]

LR N d I L Zean W VY 11 6 b § viri S I TON | ¢ % & 7
B e N E_& . v s —> ‘ RY A S s IR e

: / O ‘o’ = * L@

| | Vv

A 14 LUTs P 14 LUTs o
D) T e | O 'ﬁ ‘i i ‘- P S
B | S faan N P - W ‘ﬁ” - ~-I""i o
— .

r l

Metropolis-Hastings algorithm!:

Accept current transformation if rand(0,1) < exp(— y—LUT new
LUT_old

[1] Hastings, Biometrika’70 91

PIMap Technique: Iterative Area Minimization

Intuition: use mapping result to LA S AGASA _ .
quide randomly proposed logic PR

transformations ..

Transformation #1 /

iy L S— L A Yy 7

t’ 8. h"'-:’ *53

&

RZars A uwc ws'e P

LR N d I L Zean W VY 11

Transforrnation #2

T Y c %& L

14 LUTs

r l

N W | ok W W = i >
N W W om ' B e -
i ™

Metropolis-Hastings algorithm!:

Accept current transformation if rand(0,1) < exp(— y—LUT new
LUT_old

[1] Hastings, Biometrika’70 By

Partitioning Schemes

» No circuit partitioning ——No partition
— Long runtime per trial
_ : ini 3900
Easily stuck at local minimum EPFL design: div

BSOOM\‘
A

3700

3600

LUT Count

3500

3400

3300
O 5 10 15 20 25 30 35 40

Trial

23

Partitioning Schemes

» No circuit partitioning —4—No partition
. . 16 partitions, 5 LUTs/partition
— Long runtime per trial
_ : ini 3900
Easily stuck at local minimum EPFL design: div
I - I 1t 3800 ‘i
» Fine-grained partition) ~e—y . .
— Similar concept to exact synthesis 5 3700
. . @)
— Fast runtime per trial = 3600
_ Slow progress overall ~ 2500
3400
3300

O 5 10 15 20 25 30 35 40
Trial

24

Partitioning Schemes

» No circuit partitioning —4—No partition
16 partitions, 5 LUTs/partition

- Long runtime per trial - —e—16 partitions, 100 LUTs/partition
- EaS|I3{ stuck at I.o_cal minimum 3900 EPFL design: div
» Fine-grained partition) 3800 Mg o
— Similar concept to exact synthesis 5 3700
— Fast runtime per trial g 3600
_ Slow progress overall ~ 2500
» Coarse-grained partition 3400

— Balance runtime and solution quality .,

— Repartition between trials to further
improve quality

O 5 10 15 20 25 30 35 40
Trial

25

PIMap Technique: Partitioning and Parallelization

Initial mapping to LUT Subagraph extraction lterative area minimization Recombine subgraphs

Mapped netlist

g O T 34LUTs

26

PIMap Technique: Partitioning and Parallelization

Initial mappino to LUT Subgraph extraction lierative area minimization Recombine subographs

B Nodes in subgraph 1
AIG of design b9 M Nodes in subgraph 2

e M HAN B rl‘

Mapped netlist

34 LUTs

27

PIMap Technique: Partitioning and Parallelization

Initial mappino to LUT Subgraph extraction lierative area minimization Recombine subographs

B Nodes in subgraph 1
AIG of design b9 M Nodes in subgraph 2

Mapped netlist

A AN AAA AN
e — —— e, FAN AP AN fl

34 LUTs

28

PIMap Technique: Partitioning and Parallelization

Initial mappino to LUT Subgraph extraction lierative area minimization Recombine subographs

B Nodes in subgraph 1
AIG of design b9 M Nodes in subgraph 2

Mapped netlist

e — T

— ey Y AR AN l

29

PIMap Technique: Partitioning and Parallelization

Subgraph extraction

B Nodes in subgraph 1

“ AIG of design b9 | W Nodes in subgraph 2 Mapped netlist
N — NN —
5 34 LUTs
15 LUTs / \
— S 15 LUTs
“_ R[PC ! H §)| LR] RN vy - W N
L)t “i-.-_i.- R |
Subgraph 1 Subgraph 2

30

PIMap Technique: Partitioning and Parallelization

lterative area minimization

31

PIMap Technique: Partitioning and Parallelization

Initial mapping to LUT Suboraph extraction lterative area minimization Recombine subgraphs

15 LUTs
MW MW W
MWW W

32

PIMap Technique: Partitioning and Parallelization

Initial mapping to LUT Suboraph extraction lterative area minimization Recombine subgraphs

14 LUTs 15 LUTs

33

PIMap Technique: Partitioning and Parallelization

Initial mapping to LUT Suboraph extraction lterative area minimization Recombine subgraphs

14 LUTs 15 LUTs

34

PIMap Technique: Repartition

Initial mapping to LUT Subgraph extraction Iterative area minimization Recombine subgraphs

Optlmlzed deS|gn after trlal 1

AAARNT— [0 T ——F— 33 LUTs

Repartition using different seeds

35

PIMap Technique: Repartition

Optimized design after trial 1

== 33 LUTS

Repartition using different seeds » Iterative area minimization

Recombine subgraphs

36

PIMap Technique: Repartition

Optimized design after trial 1

p— S e S 33 LUTs

Repartition using different seeds » Iterative area minimization

@ One trial

Recombine subgraphs

37

PIMap Overall Flow

Design C1908 from the MCNC benchmark suite
5 trials in total

LUT Count = 89
_—Area Improvement = 0%

Initial Design

Observations:
1. Partition boundaries vary between trials
—> Uncover better structure
2. Overall network structure differ significantly between trials
—> Discover a wide range of designs

38

Experimental Setup

PIMap toolchain

ABC's tech
mapper

ABC’s logic
transformations:
balance, rewrite, refactor

lterative area
minimization
routine

Subgraph extraction
and parallelization
control

39

Experimental Setup

PIMap toolchain Benchmarks
’ ABC's logic Benchmark Initial design

ABC'’s tech transformations: 10 largest | pre-synthesized using

mapper balance, rewrite, refactor MCNC ABC's compress2rs

designs 1] script

lterative area Subgraph extraction EPEL best-known mapping
minimization and parallelization arithmetic designs

routine control designs [2

[1] Yang, MCNC’91
[2] Amaru, et al., http://Isi.epfl.ch/benchmarks

39

Experimental Setup

PIMap toolchain Benchmarks
’ ABC's logic Benchmark Initial design

ABC'’s tech transformations: 10 largest | pre-synthesized using

mapper balance, rewrite, refactor MCNC ABC's compress2rs

designs M script

lterative area Subgraph extraction EPEL best-known mapping
minimization and parallelization arithmetic designs

routine control designs 2

[1] Yang, MCNC’91
[2] Amaru, et al., http://Isi.epfl.ch/benchmarks

Setup

Configuration

40 trials, 100 iterations of area minimization per trial

Partitioning

up to 16 subgraphs, each with up to 100 LUTs

Computing resource | up to 8 machines, each with a quad-core Xeon processor

39

Unconstrained Area Minimization

Best-known results

100%
§ 95%
= 90%
O
N 85%
<
£ 80%
o
Z 15%

70%

designname adder shifter divisor hyp log2 ~max mult sine sqrt square average

(initial LUT count) (201) (512) (3813) (44635) (7344) (532) (5681) (1347) (3286) (3800)

Initial design ™5 trials ™10 trials ™40 trials

» Initial design: best-known results from EPFL record

40

Unconstrained Area Minimization

Best-known results

14% improvement

(3800 to 3281 LUTS) 7 % 'mpfovement

100%

95%
90%
85%
80%
75%
70%

designname adder shifter divisor hyp log2 ~max mult sine sqrt square average
(initial LUT count) (201) (512) (3813) (44635) (7344) (532) (5681) (1347) (3286) (3800)

Normalized area

Initial design ™5 trials ™10 trials ™40 trials
» Initial design: best-known results from EPFL record

» Area improvements
— EPFL: 7% on average, up to 14%

41

Unconstrained Area Minimization

100%

95%
90%
85%
80%
75%
70%

designname adder shifter divisor| hyp log2 ~max mult sine sqrt square average
(initial LUT count) (201) (512) (3813) (44635) (7344) (532) (5681) (1347) (3286) (3800)

Normalized area

Initial design ™5 trials ™10 trials ™40 trials
» Initial design: best-known results from EPFL record
» Area improvements

— EPFL: 7% on average, up to 14%
— Can effectively handle very large circuit (~44k LUTS)

42

Unconstrained Area Minimization

100%
95%
90%
85%
80%
75%

70%
design name
(initial LUT count)

Normalized area

adder
(201)

shifter divisor

(512)

(3813)

hyp
(44635)

log2 max mult sine sqrt square average
(7344) (532) (5681) (1347) (3286) (3800)

Initial design ™5 trials ™10 trials ™40 trials

Initial design: best-known results from EPFL record

Area improvements

— EPFL: 7% on average, up to 14%
— Can effectively handle very large circuit (~44k LUTS)

benchmark suite

Also able to improve all 10 control-intensive designs in EPFL

42

LUT Count vs. Gate Count Reduction

Normalized Node Count

1.04

0.96

0.92

0.88

1.16
1.12
1.08
1.04

0.96
0.92
0.88

div

1.16
1.12
1.08
1.04

0.96
0.92

10

20

30 40

multiplier

1 J 0.9

30 40

11 ¢

1.06

1.02

0.98

094

log2

0 10 20 30 40

square

-#-LUT Count
-o—-Gate Count

0 10 20 30 40

Number of Trial

43

LUT Count vs. Gate Count Reduction

Verified:
post-mapping area does not necessarily correlate with pre-mapping area

div log2
1.04 1.16 ¢
1.12
1
1.08
£ 0.9 1.04
)
) 1
O 092
8 0.96
o 0.8 ' ' ' 0.92 ' ' '
Z 0 10 20 30 40 0 10 20 30 40
©
N multiplier square
= 1.16 1.1
o 1.12
§ ' 1.06 |
e) 1.08
Z 104 102 r/ -m-LUT Count
1 008 I\ -e-Gate Count
0.96
0.9 0.94 |
0'88 1 1 1] 0.9 1 1 1]

0 10 20 30 40 0 10 20 30 40
Number of Trial

Subgraph Size vs. Runtime

» Tradeoff between runtime vs. progress per trial
— Optimal subgraph size is around 100 LUTs

1 -

O \
g 08 K \/
§ 0.6 \
04 e
% oa |\
N 04t /
= Ny
S 02t T
(@]
zZ
0

0 100 200 300 400 500 600
Subgraph Size
——div —+log2 multiplier square

44

Depth Constrained Area Minimization

>

Constraint: no depth increase compared to initial design
— Initial designs generated by ABC’s depth-minimizing resyn2 script
-~ In PIMap, only accept designs within depth constraint after each trial

45

Depth Constrained Area Minimization

» Constraint: no depth increase compared to initial design

— Initial designs generated by ABC’s depth-minimizing resyn2 script

-~ In PIMap, only accept designs within depth constraint after each trial
» Area improvements under depth constraint

- 11% on average, up to 30%
11% improvement

100%

95%
90%
85%
80%
75%
70%
o AR A
60%

designname alu4 apex2 apex4 des ex1010 ex5p misex3 pdc seq spla average
(initial LUT count/depth) (511/5) (674/6) (588/5) (818/5) (655/5) (351/5) (443/5) (1431/7) (693/5) (1392/7)

Initial design ™5 trials ™10 trials ™40 trials

Normalized area

46

Area Reduction under a Tight Runtime Limit

» In use cases with tight runtime budget
— Use fewer number of trials and fewer iterations per trial

47

Area Reduction under a Tight Runtime Limit

» In use cases with tight runtime budget
— Use fewer number of trials and fewer iterations per trial

— PIMap still able to improve most of the best-known results of EPFL
benchmark designs

Area reduction using PIMap with tight runtime limit
Designs Best-known PIMap

Adder 201 197

Shifter 512 512

Divisor 3813 3787 Runtime limit:
Hyp 44635 44635 10 seconds
Log2 7344 7305
Max 532 526
Mult 5681 5594
Sine 1347 1309
Sqrt 3286 3279

square 3800 3675

47

Conclusions

» Circuit area before/after mapping does not necessarily correlate
» Stochastic mapping-in-the-loop approach for area minimization
» Sub-circuit extraction and parallelization for runtime reduction

» Up to 14% and 7% on average over the best-known records for the
EPFL arithmetic benchmark suite

» Future work: depth minimization in tech mapping

o
©

o
o)

DAGMap

o
\l

FlowMap

o
o)

Kand L

Normalized Area

IMap Exact
synthesis

o
&

DAOMap

o
N

PIMap
ABC Map | g

o
w

1990 1994 1998 2002 2006 2010 2014 2018
Year

48

	A Parallelized Iterative Improvement Approach to �Area Optimization for LUT-Based Technology Mapping
	Technology Mapping for FPGAs
	Technology Mapping for FPGAs
	Technology Mapping for FPGAs
	Technology Mapping for FPGAs
	Technology Mapping for FPGAs
	Tech Mapping for Area is a Hard Problem
	Tech Mapping for Area is a Hard Problem
	Tech Mapping for Area is a Hard Problem
	Tech Mapping for Area is a Hard Problem
	Tech Mapping for Area is a Hard Problem
	Tech Mapping for Area is a Hard Problem
	Tech Mapping for Area is a Hard Problem
	Tech Mapping for Area is a Hard Problem
	Representative Academic Mappers
	Representative Academic Mappers
	World Record for Area Optimization
	Common Restructuring Techniques
	Common Restructuring Techniques
	Typical Pre-mapping Transformation Sequence
	Typical Pre-mapping Transformation Sequence
	Typical Pre-mapping Transformation Sequence
	Typical Pre-mapping Transformation Sequence
	Typical Pre-mapping Transformation Sequence
	Study of (Mis)Correlation
	Study of (Mis)Correlation
	Study of (Mis)Correlation
	Study of (Mis)Correlation
	Study of (Mis)Correlation
	Study of (Mis)Correlation
	Study of (Mis)Correlation
	Study of (Mis)Correlation
	PIMap: A Parallelized Iterative Improvement Approach to LUT-Based Tech Mapping
	PIMap: A Parallelized Iterative Improvement Approach to LUT-Based Tech Mapping
	PIMap Technique: Iterative Area Minimization
	PIMap Technique: Iterative Area Minimization
	PIMap Technique: Iterative Area Minimization
	PIMap Technique: Iterative Area Minimization
	PIMap Technique: Iterative Area Minimization
	PIMap Technique: Iterative Area Minimization
	PIMap Technique: Iterative Area Minimization
	Partitioning Schemes
	Partitioning Schemes
	Partitioning Schemes
	PIMap Technique: Partitioning and Parallelization
	PIMap Technique: Partitioning and Parallelization
	PIMap Technique: Partitioning and Parallelization
	PIMap Technique: Partitioning and Parallelization
	PIMap Technique: Partitioning and Parallelization
	PIMap Technique: Partitioning and Parallelization
	PIMap Technique: Partitioning and Parallelization
	PIMap Technique: Partitioning and Parallelization
	PIMap Technique: Partitioning and Parallelization
	PIMap Technique: Repartition
	PIMap Technique: Repartition
	PIMap Technique: Repartition
	PIMap Overall Flow
	Experimental Setup
	Experimental Setup
	Experimental Setup
	Unconstrained Area Minimization
	Unconstrained Area Minimization
	Unconstrained Area Minimization
	Unconstrained Area Minimization
	LUT Count vs. Gate Count Reduction
	LUT Count vs. Gate Count Reduction
	Subgraph Size vs. Runtime
	Depth Constrained Area Minimization
	Depth Constrained Area Minimization
	Area Reduction under a Tight Runtime Limit
	Area Reduction under a Tight Runtime Limit
	Conclusions

