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Motivation

* FPGA applications are getting more complicated
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Motivation

* FPGA applications are getting more complicated

— More transistors
— More engines

— Multiple memory controllers

— Multiple programs
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Customizing FPGA Platform

* How to connect computational engines to board-level
memories in order to maximize program performance?
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FPGA

Host Processor

— On-chip caching

—|Network topology: latency, bandwidth

High design complexity!
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Customizing FPGA Platform

* How to connect computational engines to board-level
memories in order to maximize program performance?

— High design complexity: caching, networlk,...

e Applications have different memory behavior

Sensitive to latency!

>

Controller Controller

:; \
Board-Level Memory Board-Level Memory

Engine A Engine B Engine C EngineD
l‘:l’ '

Need automation!
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Automatic Construction of
Program-Optimized Memories

* A clearly-defined, generic memory abstraction

— Separate the user program from the memory system
implementation

* Program introspection
— Understand the program’s memory behavior
* A resource-aware, feedback-driven memory compiler

— Use introspection results as feedback to automatically
construct the “best” memory system for the target
program and platform
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LEAP Memory Abstraction

LEAP memory block
[ User Engine] * Simple memory interface
* Arbitrary data size
* Private address space
LEAP * “Unlimited” storage
Memory e Automatic caching

Interface == == $ -——

interface MEM_IFCH(type t_ADDR, type t_DATA)
method void readReq(t_ADDR addr);
method void write(t_ADDR addr, t_DATA din);
method t_DATA readResp();

endinterface
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Baseline LEAP Private Memory
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Can we do better?
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Customizing LEAP Memory Network

* Distributed memory controllers
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Motivating Example #1

* Filtering algorithm for K-means clustering
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Motivating Example #1

* Filtering algorithm for K-means clustering (HLS kernel)
— 3 different data structures

— 8 parallel partitions,

24 LEAP memory clients in total

Three data structures:
(1) Tree nodes (low locality)
(2) Center sets (high locality)

(3) Stack (very high locality)

Centre sets
(type CS)

Stack (linked list)
(type ST)

cl({d|n|{upHL

=
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() (deleted)
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Motivating Example #1

* Filtering algorithm for K-means clustering

— Program introspection: number of network messages
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Three types of memory clients:
(1) Lots of read misses, few write-backs (tree nodes)
(2) More write-backs than read misses (center sets)

(3) No messages at all (stacks) s



Motivating Example #2

* FPGA virtualization: mapping multiple programs on FPGA

Program 1 Program 2
Client Client Client Client
Interface I I . % -------- } ------ { ------- % ------
Private

Memory Client

— May need some quality-of-service (QoS) control

Private Private Private
Memory Client || Memory Client || Memory Client

— Different programs are likely to have different behavior
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Communication Abstraction

e Service connection
— A new communication abstraction for centralized services

* Enabling compilers to freely pick interconnect topology

Module A Module B Module C
mkServiceClient (“MEM”) mkServiceClient (“"MEM” mkServiceClient (“MEM”) ;

Service Client

Service Client Service Client

Name: “MEM”, Name: “MEM”, Name: “MEM”,
i.~~§
~ Arblter
Compiler-Generated N Arbiy
'y
Service Server —> Request
Name: “MEM” ---» Response

Service Controller

mkServiceServer (“"MEM”) ;




Compiler-Generated
Network Topologies

Single Ring  Low complexity, long latency

Client — Request

----» Response
' O Client

Ring Node O Controller

Hierarchical Ring Tree

Ring
Connector

Shorter latency, larger area Highest complexity, shortest latency



Network Profiler

* Goal: to emulate different networks in a single compilation

— Network partitioning, latency and bandwidth are all
dynamically configurable

Private Private Private Private
( Memory w ( Memory w ( Memory w ( Memory 1
Gnstrumentationlﬂnstrumentationl@nstrumentationj_@nstrumentation)
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(Interleaver
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Tree-Based Network

* Construct a tree network that maximizes performance
— ldeal case:

Timing Pressure

— More children per node, larger timing pressure on routers
— Fix K = max(#children per node) given a target frequency
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Tree-Based Network

e Construct a K-ary tree that maximizes performance

— Given L: number of leaves (clients)
K: max number of children per node

— Case 1: clients with homogeneous behavior

e Solution: build a balanced tree with the minimum
number internal nodes

* Example: L=6, K=3

Depth =2 O Leaf Node

Depth=1

Depth =0 Minimizing ) (leaf depth)
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Tree-Based Network

* Construct a K-ary tree that maximizes performance

— Case 2: clients with heterogeneous behavior

* Some clients are more sensitive to latency

* Place latency-sensitive clients closer to root

* A balanced tree may not be optimal

* Example: L=6, K=3

1d 1d 0.5d 0.5d 0.2d
Depth d=2
2d
Depth d=1

Total: 8.4

Solution A

0.5d 0.2d Better!

1d 0.5d

Solution B
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Automatic Construction of
Program-Optimized Memories

* Program introspection
— Understand the program’s memory behavior
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Program Introspection with
Network Profiler

 Network profiler measures latency sensitivity per
memory client

Private Private Private Private
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Program Introspection with
Network Profiler

 Network profiler measures latency sensitivity per
memory client
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Program Introspection with
Network Profiler

* Instrumentation logic monitors total number of requests,
request rates, queueing delays...

-

Private

~

-

Private

~

-

Private

~

-

Private

~

Memory

Memory

Memory

Memory

sl

Gnstrumentation]ﬂnstrumentation Instrumentation Instrumentatioi)h’>'
=] * g * 1~ +—P><tatency FIFOs

HH HH HH HH
(Interleaver Qnterleaver)

AN
-
.

Compiler-Generated <=

A
WRouter / Tree Router

[Private Memory Controller}—{ Private Memory Controller]

—> Request
----- » Response

29



Construction of Optimized
Cache Networks

* Profiling compilation
— Measure clients’ latency sensitivity, bandwidth demands

$

* Main compilation: three-stage network construction
— Network partitioning: (FPGA’16)
to balance the total traffic among controller networks

— Topology selection with client placement: to minimize
the network latency impact on program performance

H.-J. Yang et al., “LMC: Automatic Resource-Aware Program-Optimized Memory Partitioning,” in FPGA, 2016.
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Optimized Tree Construction

* Construct a K-ary tree minimizing the total tree weights

— @Given N: # leaves, K: max # children, D: max tree depth,
Wy 4. Weight of leaf n at depth d

— Variables: A, ; € {0,1}: whether leaf n is at depth d
Xg € Zs¢: # leaves at depth d
V4 € Zsq: #internal nodes at depth d

— Integer linear programming (ILP) Problem:

N 2 s.t. Zd And =1,Vn
/I{lxi,r)} z z Anded Xqg = Zn And ) vd
n=1d=1 Ya+x4 =K yz_4,¥d
Yo = 1 (root)
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Construction of Optimized
Cache Networks

* Profiling compilation
* Main compilation: three-stage network construction

— Bandwidth allocation: (for multi-program applications)
to control the fairness among multiple programs

Allocated
Bandwidth: 5

Tree Router
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Evaluation

Filtering algorithm on VC709
— Varying K
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Evaluation

* Filtering algorithm on VC709
— Different network configurations

Speedup
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1.4

13
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H Simulated
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Network Configuration
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Virtualizing FPGA

Case study: Mergesorter + Filtering algorithm

— Mergesorter: 4 LEAP memories (Filter: 24 memories)

Performancepp

— Performance ratior =
Performancegsp

— Fairness = n/(Q, Yr)

1.2
1
0.8
B TLilter
0.6
u rMergesorter
0.4 ® Fairness
0.2
0

Baseline Single Ring Tree w/o Tree w/

Bandwidth Control Bandwidth Control
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Conclusion

 We introduce a feedback-driven compiler that
automatically constructs memory networks optimized for
the target application.

— A communication abstraction for centralized services
— A dynamically configurable network profiler
— Tree topology selection algorithms

e Future work:

— Resource-aware memory network optimizations for
asymmetric memory controllers



