Automatic Construction of
Program-Optimized
FPGA Memory Networks

Hsin-Jung Yang’, Kermin E. Fleming*, Felix Winterstein§$,
Annie I. Chen’, Michael Adler?, and Joel Emer’

" Massachusetts Institute of Technology,
? Intel Corporation, 3 Imperial College London

February 23rd, FPGA 2017

Motivation

* FPGA applications are getting more complicated

Accelerator

— = o
FPGA Platform Other
(Hardware Framework) FPGA(s)
—— —
Memory Controller
 DRAV FPGA

Software Framework Host Processor

Motivation

* FPGA applications are getting more complicated
— More transistors
— More engines

Accelerator

— — >

FPGA Platform Other
(Hardware Framework) FPGA(s)

— "
Memory Controller

o -

Software Framework Host Processor

Motivation

* FPGA applications are getting more complicated

— More transistors — Multiple memory controllers

— More engines

Accelerator
— — w—
FPGA Platform
(Hardware FrameworkL

—— "
Memory Controller Memory Controller

FPGA

Software Framework Host Processor

Other
FPGA(s)

Motivation

* FPGA applications are getting more complicated

— More transistors
— More engines

— Multiple memory controllers

— Multiple programs

Accelerator1

Accelerator 2

— = -

FPGA Platform
(Hardware FrameworkL_

e

— "
Memory Controller Memory Controller

FPGA

Software Framework

Host Processor

Other
FPGA(s)

Customizing FPGA Platform

* How to connect computational engines to board-level
memories in order to maximize program performance?

e L

e

On-Chip

Board-Level Memory Board-Level Memory

FPGA

Host Processor

— On-chip caching

—|Network topology: latency, bandwidth

High design complexity!

6

Customizing FPGA Platform

* How to connect computational engines to board-level
memories in order to maximize program performance?

— High design complexity: caching, networlk,...

S\
S —
Board-Level Memory Board-Level Memory

Customizing FPGA Platform

* How to connect computational engines to board-level
memories in order to maximize program performance?

— High design complexity: caching, networlk,...

Engine A Engine B Engine C EngineD

Board-Level Memory Board-Level Memory

Customizing FPGA Platform

* How to connect computational engines to board-level
memories in order to maximize program performance?

— High design complexity: caching, networlk,...

e Applications have different memory behavior

Need n.‘orel Engine A Engine B
bandwidth! Cbl

Engine C Engine D

>

Controller Controller

N

S —
Board-Level Memory Board-Level Memory

Customizing FPGA Platform

* How to connect computational engines to board-level
memories in order to maximize program performance?

— High design complexity: caching, networlk,...

e Applications have different memory behavior

Sensitive to latency!

>

Controller Controller

:; \
Board-Level Memory Board-Level Memory

Engine A Engine B Engine C EngineD
l‘:l’ '

Need automation!

10

Automatic Construction of
Program-Optimized Memories

* A clearly-defined, generic memory abstraction

— Separate the user program from the memory system
implementation

* Program introspection
— Understand the program’s memory behavior
* A resource-aware, feedback-driven memory compiler

— Use introspection results as feedback to automatically
construct the “best” memory system for the target
program and platform

11

LEAP Memory Abstraction

LEAP memory block
[User Engine] * Simple memory interface
* Arbitrary data size
* Private address space
LEAP * “Unlimited” storage
Memory e Automatic caching

Interface == == $ -——

interface MEM_IFCH(type t_ADDR, type t_DATA)
method void readReq(t_ADDR addr);
method void write(t_ADDR addr, t_DATA din);
method t_DATA readResp();

endinterface

12

User
Program

e S S

FPGA

Client

Client

Client

on-chip SRAM

-
-
T

Private
Memory Client

Private
Memory Client

Private Cache

Private
Memory Client

Private Cache

Baseline LEAP Private Memory

Processor

Application]

I

L1 Cache

AN

-
-
-
—————

.."'!-
i
——..._.___

Platform Req

Private Memory Controller

on-board

/ DRAM

Host Memory

| [commiomecomnier
S

FPGA

Host v

13

M. Adler et al., “LEAP Scratchpads,” in FPGA, 2011.

Baseline LEAP Private Memory

Iterface = mmm o m = m m o m = e o

——‘
==

Client

Client

Client

Private
Memory Client

Private
Memory Client

- Memory Client

Private

[Private Cache]

[Private Cache]

[Private Cache]

>

-
e~

————

Private Memory Controller

-
-
————
3

v

Central Cache Controller ‘

Local Memory
(DRAM)

Host Memory

Local Memory
(DRAM)

©)
©)

Simplicity

(

©)
©)

Cache capacity scales with the
increasing number of DRAMs

(

Difficulty: Performance is limited
A Limited bandwidth

A~ Long latency for large rings

Can we do better?

14

Customizing LEAP Memory Network

* Distributed memory controllers

Interface ————% ------- }

Client

Client

Client

Client

Traffic:

Latency Se

Private
Memory Client

Private
Memory Client

Private

Private

Memory Client

Private Memory Controller

Private Memory Controller

A
¥ ¥
Central Cache Central Cache
Controller Controller
Local Memory Local Memory
FPGA (DRAM Bank) (DRAM Bank)
\ 4
Host

Host Memory

15

Motivating Example #1

* Filtering algorithm for K-means clustering

16

Motivating Example #1

* Filtering algorithm for K-means clustering (HLS kernel)
— 3 different data structures

— 8 parallel partitions,

24 LEAP memory clients in total

Three data structures:
(1) Tree nodes (low locality)
(2) Center sets (high locality)

(3) Stack (very high locality)

Centre sets
(type CS)

Stack (linked list)
(type ST)

cl({d|n|{upHL

=
s

Tree Centipid information

(type TR) (type CI)

o

() (deleted)
- ab
J..-‘zz ""--________\-\--_\--\-\- ‘._\ b
() (deleted) “H@

Cl "z

K b

17

Motivating Example #1

* Filtering algorithm for K-means clustering

— Program introspection: number of network messages

4000

avior
3500 mory beh

: e
icm
3000 metr
. Asym
¢ 2500
(1]
@ 2000
g B Read Miss
= 1500 |
1000 B Write-back
500
0 A = _m - - _m =

1 2 3 4 5 6 7 8 9 10\11 12 13 /14 15 16 17 18 19 20 21 22 23 24

Three types of memory clients:
(1) Lots of read misses, few write-backs (tree nodes)
(2) More write-backs than read misses (center sets)

(3) No messages at all (stacks) s

Motivating Example #2

* FPGA virtualization: mapping multiple programs on FPGA

Program 1 Program 2
Client Client Client Client
Interface I I . % -------- } ------ { ------- % ------
Private

Memory Client

— May need some quality-of-service (QoS) control

Private Private Private
Memory Client || Memory Client || Memory Client

— Different programs are likely to have different behavior

19

Communication Abstraction

e Service connection
— A new communication abstraction for centralized services

* Enabling compilers to freely pick interconnect topology

Module A Module B Module C
mkServiceClient (“MEM”) mkServiceClient (“"MEM” mkServiceClient (“MEM”) ;

Service Client

Service Client Service Client

Name: “MEM”, Name: “MEM”, Name: “MEM”,
i.~~§
~ Arblter
Compiler-Generated N Arbiy
'y
Service Server —> Request
Name: “MEM” ---» Response

Service Controller

mkServiceServer (“"MEM”) ;

Compiler-Generated
Network Topologies

Single Ring Low complexity, long latency

Client — Request

----» Response
' O Client

Ring Node O Controller

Hierarchical Ring Tree

Ring
Connector

Shorter latency, larger area Highest complexity, shortest latency

Network Profiler

* Goal: to emulate different networks in a single compilation

— Network partitioning, latency and bandwidth are all
dynamically configurable

Private Private Private Private
(Memory w (Memory w (Memory w (Memory 1
Gnstrumentationlﬂnstrumentationl@nstrumentationj_@nstrumentation)
ﬁ | I I_El | g I_El [~ é Latency FIFOs
; b’ ; bi i bi - bl

(Interleaver

"\

Compiler-Generated <

WRouter /
— Request
i I R » Response

\ v'

[Private Memory ControIIerH Private Memory Controller]

Tree Router

Tree-Based Network

* Construct a tree network that maximizes performance
— ldeal case:

Timing Pressure

— More children per node, larger timing pressure on routers
— Fix K = max(#children per node) given a target frequency

23

Tree-Based Network

e Construct a K-ary tree that maximizes performance

— Given L: number of leaves (clients)
K: max number of children per node

— Case 1: clients with homogeneous behavior

e Solution: build a balanced tree with the minimum
number internal nodes

* Example: L=6, K=3

Depth =2 O Leaf Node

Depth=1

Depth =0 Minimizing) (leaf depth)

24

Tree-Based Network

* Construct a K-ary tree that maximizes performance

— Case 2: clients with heterogeneous behavior

* Some clients are more sensitive to latency

* Place latency-sensitive clients closer to root

* A balanced tree may not be optimal

* Example: L=6, K=3

1d 1d 0.5d 0.5d 0.2d
Depth d=2
2d
Depth d=1

Total: 8.4

Solution A

0.5d 0.2d Better!

1d 0.5d

Solution B

25

Automatic Construction of
Program-Optimized Memories

* Program introspection
— Understand the program’s memory behavior

26

Program Introspection with
Network Profiler

 Network profiler measures latency sensitivity per
memory client

Private Private Private Private
Memory Memory Memory Memory

rstramentation Instrumentation)\ﬂnstrumentation)_“nstrumen atio
to 1 d 1N h Latency FIFOs

; I

Gnterleaver Interleaver Interleaver Interleaver

AN

~
....
- g cea

-

Tree Router \I’ree Route/
A
— Request
; ; ----> Response

\ \ A

[Private Memory ControllerH Private Memory Controller]

Compiler-Generated <

27

Program Introspection with
Network Profiler

 Network profiler measures latency sensitivity per
memory client

1.05 , . . |
Mem01 —+— Mem09 --&-
Mem02 -+- Mem10 ——
1.04 - |
Mem03 --# Mem11 -
= _I
£ Mem0Q4 Mem12 --&- .
€ 1.03 =y
T Mem05 -B- Mem13 e o e
E MemQ06 Mem14 -&- L ’ ’_,ﬁ-f'”’ P
T = e o _'ﬁ.x- '
£ 1.02 Mem07 Mem15 - e
D { - -
pd Mem16 T'}_ o _
1.01 _
1 2 3 4 5 5

Tree Depth

Program Introspection with
Network Profiler

* Instrumentation logic monitors total number of requests,
request rates, queueing delays...

-

Private

~

-

Private

~

-

Private

~

-

Private

~

Memory

Memory

Memory

Memory

sl

Gnstrumentation]ﬂnstrumentation Instrumentation Instrumentatioi)h’>'
=] * g * 1~ +—P><tatency FIFOs

HH HH HH HH
(Interleaver Qnterleaver)

AN
-
.

Compiler-Generated <=

A
WRouter / Tree Router

[Private Memory Controller}—{ Private Memory Controller]

—> Request
----- » Response

29

Construction of Optimized
Cache Networks

* Profiling compilation
— Measure clients’ latency sensitivity, bandwidth demands

$

* Main compilation: three-stage network construction
— Network partitioning: (FPGA’16)
to balance the total traffic among controller networks

— Topology selection with client placement: to minimize
the network latency impact on program performance

H.-J. Yang et al., “LMC: Automatic Resource-Aware Program-Optimized Memory Partitioning,” in FPGA, 2016.

30

Optimized Tree Construction

* Construct a K-ary tree minimizing the total tree weights

— @Given N: # leaves, K: max # children, D: max tree depth,
Wy 4. Weight of leaf n at depth d

— Variables: A, ; € {0,1}: whether leaf n is at depth d
Xg € Zs¢: # leaves at depth d
V4 € Zsq: #internal nodes at depth d

— Integer linear programming (ILP) Problem:

N 2 s.t. Zd And =1,Vn
/I{lxi,r)} z z Anded Xqg = Zn And) vd
n=1d=1 Ya+x4 =K yz_4,¥d
Yo = 1 (root)

31

Construction of Optimized
Cache Networks

* Profiling compilation
* Main compilation: three-stage network construction

— Bandwidth allocation: (for multi-program applications)
to control the fairness among multiple programs

Allocated
Bandwidth: 5

Tree Router

32

Evaluation

Filtering algorithm on VC709
— Varying K

1.46

1.44
1.42

1.4
1.38
1.36
1.34
1.32

3 = 5 6

K (Max # Children per Node)

Speedup

Interface

FPGA
Host

Baseline

[client || cient || client |

Private Memory Controller

I Central Cache Controller I

Local Memory | | Local Memory
(DRAM) (DRAM)

Host Memory

B Balanced-Tree (Random)
B Balanced-Tree (Sorted)
M ILP

Ideal Network

33

Evaluation

* Filtering algorithm on VC709
— Different network configurations

Speedup

1.5

1.4

13

1.2

1.1

1

0.9

0.8

H Simulated

W Actual

Baseline Single Ring Hierarchical Tree Tree
Ring (K=3, ILP) (K=6, ILP)

Network Configuration

34

Virtualizing FPGA

Case study: Mergesorter + Filtering algorithm

— Mergesorter: 4 LEAP memories (Filter: 24 memories)

Performancepp

— Performance ratior =
Performancegsp

— Fairness = n/(Q, Yr)

1.2
1
0.8
B TLilter
0.6
u rMergesorter
0.4 ® Fairness
0.2
0

Baseline Single Ring Tree w/o Tree w/

Bandwidth Control Bandwidth Control
35

Conclusion

 We introduce a feedback-driven compiler that
automatically constructs memory networks optimized for
the target application.

— A communication abstraction for centralized services
— A dynamically configurable network profiler
— Tree topology selection algorithms

e Future work:

— Resource-aware memory network optimizations for
asymmetric memory controllers

