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– Network topology: latency, bandwidth 
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Customizing FPGA Platform 

• How to connect computational engines to board-level 
memories in order to maximize program performance? 

– High design complexity: caching, network,… 

• Applications have different memory behavior 

 Sensitive to latency! 

Need automation! 



• A clearly-defined, generic memory abstraction 

– Separate the user program from the memory system 
implementation 

• Program introspection  

– Understand the program’s memory behavior 

• A resource-aware, feedback-driven memory compiler  

– Use introspection results as feedback to automatically 
construct the “best” memory system for the target 
program and platform 

 

 

Automatic Construction of  

Program-Optimized Memories 
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LEAP Memory Abstraction 
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interface MEM_IFC#(type t_ADDR, type t_DATA) 
       method void readReq(t_ADDR addr); 
       method void write(t_ADDR addr, t_DATA din); 
       method t_DATA readResp(); 
endinterface 

LEAP 
Memory 

User Engine  

Interface 

LEAP memory block 
• Simple memory interface 
• Arbitrary data size 
• Private address space 
• “Unlimited” storage 
• Automatic caching 



Baseline LEAP Private Memory 
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M. Adler et al., “LEAP Scratchpads,” in FPGA, 2011. 
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Platform 
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Baseline LEAP Private Memory 
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Difficulty:  Performance is limited 
 
 

Limited bandwidth 

Long latency for large rings 

Can we do better? 

Cache capacity scales with the 
increasing number of DRAMs 

Simplicity 



• Distributed memory controllers 
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? 

Customizing LEAP Memory Network 

             Traffic:            100                  10                     50               20 
             Latency Sensitivity:       5                      1                      2                  3 



Motivating Example #1 
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• Filtering algorithm for K-means clustering 

K=5 



Motivating Example #1 
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• Filtering algorithm for K-means clustering (HLS kernel) 

– 3 different data structures 

– 8 parallel partitions,  
24 LEAP memory clients in total 

Three data structures:  
(1) Tree nodes (low locality) 
(2) Center sets (high locality) 
(3) Stack (very high locality) 



Motivating Example #1 
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• Filtering algorithm for K-means clustering 

– Program introspection: number of network messages  
 

Three types of memory clients:  
(1) Lots of read misses, few write-backs (tree nodes) 
(2) More write-backs than read misses (center sets) 
(3) No messages at all (stacks) 



Motivating Example #2 
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• FPGA virtualization: mapping multiple programs on FPGA 

 

 

 

 

 

 

– Different programs are likely to have different behavior 

– May need some quality-of-service (QoS) control 



Communication Abstraction 
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• Service connection 

– A new communication abstraction for centralized services 

• Enabling compilers to freely pick interconnect topology 
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Compiler-Generated  

Network Topologies 
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321

4

Tree Router

Highest complexity, shortest latency 



Network Profiler 
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Compiler-Generated
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• Goal: to emulate different networks in a single compilation 

– Network partitioning, latency and bandwidth are all 
dynamically configurable 



• Construct a tree network that maximizes performance 

– Ideal case: 

 

 

 

 
 

– More children per node, larger timing pressure on routers 

– Fix K = max(#children per node) given a target frequency 

 

 

 

Tree-Based Network 
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Timing Pressure 



• Construct a K-ary tree that maximizes performance 

– Given L: number of leaves (clients) 
           K: max number of children per node 

– Case 1: clients with homogeneous behavior 

• Solution: build a balanced tree with the minimum 
number internal nodes  

• Example: L=6, K=3 

 

Tree-Based Network 
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Minimizing  (leaf depth) Depth = 0 

Depth = 1 

Depth = 2 



• Construct a K-ary tree that maximizes performance 

– Case 2: clients with heterogeneous behavior 

• Some clients are more sensitive to latency 

• Place latency-sensitive clients closer to root 

• A balanced tree may not be optimal  

• Example: L=6, K=3 

 

Tree-Based Network 

25 Solution A 

Better! 

2d 

1d 1d 0.5d 0.5d 0.2d 

Depth d=1 

Total: 8.4 

Depth d=2 

Solution B 

2d 1d 

1d 0.5d 

0.5d 0.2d 

Total: 8.1 

d=1 

d=2 

d=3 



• A clearly-defined, generic memory abstraction 

– Separate the user program from the memory system 
implementation 

• Program introspection  

– Understand the program’s memory behavior 

• A resource-aware, feedback-driven memory compiler  

– Use introspection results as feedback to automatically 
construct the “best” memory system for the target 
program and platform 
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Program Introspection with 

Network Profiler 
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• Network profiler measures latency sensitivity per 
memory client 
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Program Introspection with 

Network Profiler 
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• Network profiler measures latency sensitivity per 
memory client 

 

 

 

 

 



Program Introspection with 

Network Profiler 
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• Instrumentation logic monitors total number of requests, 
request rates, queueing delays… 
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• Profiling compilation 

– Measure clients’ latency sensitivity, bandwidth demands 

 
 

• Main compilation: three-stage network construction 

– Network partitioning: (FPGA’16) 

to balance the total traffic among controller networks 

– Topology selection with client placement:  to minimize 
the network latency impact on program performance 
 

Construction of Optimized  

Cache Networks 

30 H.-J. Yang et al., “LMC: Automatic Resource-Aware Program-Optimized Memory Partitioning,” in FPGA, 2016. 



• Construct a K-ary tree minimizing the total tree weights 

– Given  𝑁: # leaves,  𝐾: max # children, 𝐷: max tree depth, 

             𝑤𝑛𝑑: weight of leaf 𝑛 at depth 𝑑 

– Variables: 𝜆𝑛𝑑 ∈ 0,1 : whether leaf 𝑛 is at depth 𝑑 
                       𝑥𝑑 ∈  Ζ≥0: # leaves at depth 𝑑 
                       𝑦𝑑 ∈  Ζ≥0: # internal nodes at depth 𝑑 
 

– Integer linear programming (ILP) Problem:  

 

min
𝜆,𝑥,𝑦
  𝜆𝑛𝑑𝑤𝑛𝑑

𝐷

𝑑=1

𝑁

𝑛=1

 

 
 

Optimized Tree Construction 
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s.t.  𝜆𝑛𝑑𝑑 = 1, ∀𝑛 
      𝑥𝑑 =  𝜆𝑛𝑑𝑛 , ∀𝑑 
      𝑦𝑑 + 𝑥𝑑 = 𝐾 ∙ 𝑦𝑑−1, ∀𝑑 
      𝑦0 = 1 (root)             



• Profiling compilation 

• Main compilation: three-stage network construction 

– Network partitioning (FPGA’16) 

– Topology selection with client placement 

– Bandwidth allocation: (for multi-program applications) 
to control the fairness among multiple programs 
 

Construction of Optimized  

Cache Networks 
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Tree Router 

3 1 2 2 5 
Allocated 
Bandwidth: 



Evaluation 
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• Filtering algorithm on VC709 

– Varying 𝐾 (max number of children per node) 
 

Baseline 

Ideal Network 



Evaluation 
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• Filtering algorithm on VC709 

– Different network configurations 
 



Virtualizing FPGA 
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• Case study: Mergesorter + Filtering algorithm 

– Mergesorter: 4 LEAP memories (Filter: 24 memories) 

– Performance ratio 𝑟 =
𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑀𝑃

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑆𝑃
 

– Fairness = 𝑛  1
𝑟𝑖 

𝑛
𝑖=1  

 

 



Conclusion 
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• We introduce a feedback-driven compiler that 
automatically constructs memory networks optimized for 
the target application. 

– A communication abstraction for centralized services 

– A dynamically configurable network profiler 

– Tree topology selection algorithms 

• Future work: 

– Resource-aware memory network optimizations for 
asymmetric memory controllers 


