
Hsin-Jung Yang†, Kermin E. Fleming‡, Felix Winterstein§,
Annie I. Chen†, Michael Adler‡, and Joel Emer†

† Massachusetts Institute of Technology,
‡ Intel Corporation, § Imperial College London

February 23rd, FPGA 2017

2

Motivation

• FPGA applications are getting more complicated

3

Motivation

• FPGA applications are getting more complicated

– More transistors

– More engines

4

Motivation

• FPGA applications are getting more complicated

– More transistors

– More engines

– Multiple memory controllers

5

Motivation

• FPGA applications are getting more complicated

– More transistors

– More engines

– Multiple memory controllers

– Multiple programs

6

Customizing FPGA Platform

• How to connect computational engines to board-level
memories in order to maximize program performance?

– On-chip caching

– Network topology: latency, bandwidth

?

7

Customizing FPGA Platform

• How to connect computational engines to board-level
memories in order to maximize program performance?

– High design complexity: caching, network,…

?

8

Customizing FPGA Platform

• How to connect computational engines to board-level
memories in order to maximize program performance?

– High design complexity: caching, network,…

9

Customizing FPGA Platform

• How to connect computational engines to board-level
memories in order to maximize program performance?

– High design complexity: caching, network,…

• Applications have different memory behavior

Need more
bandwidth!

10

Customizing FPGA Platform

• How to connect computational engines to board-level
memories in order to maximize program performance?

– High design complexity: caching, network,…

• Applications have different memory behavior

 Sensitive to latency!

Need automation!

• A clearly-defined, generic memory abstraction

– Separate the user program from the memory system
implementation

• Program introspection

– Understand the program’s memory behavior

• A resource-aware, feedback-driven memory compiler

– Use introspection results as feedback to automatically
construct the “best” memory system for the target
program and platform

Automatic Construction of

Program-Optimized Memories

11

LEAP Memory Abstraction

12

interface MEM_IFC#(type t_ADDR, type t_DATA)
 method void readReq(t_ADDR addr);
 method void write(t_ADDR addr, t_DATA din);
 method t_DATA readResp();
endinterface

LEAP
Memory

User Engine

Interface

LEAP memory block
• Simple memory interface
• Arbitrary data size
• Private address space
• “Unlimited” storage
• Automatic caching

Baseline LEAP Private Memory

13

Client Client Client

Interface

Processor

Application

L1 Cache

L2 Cache

Memory

FPGA

on-chip SRAM

M. Adler et al., “LEAP Scratchpads,” in FPGA, 2011.

User
Program

Platform

on-board
DRAM

Baseline LEAP Private Memory

14

Difficulty: Performance is limited

Limited bandwidth

Long latency for large rings

Can we do better?

Cache capacity scales with the
increasing number of DRAMs

Simplicity

• Distributed memory controllers

15

?

Customizing LEAP Memory Network

 Traffic: 100 10 50 20
 Latency Sensitivity: 5 1 2 3

Motivating Example #1

16

• Filtering algorithm for K-means clustering

K=5

Motivating Example #1

17

• Filtering algorithm for K-means clustering (HLS kernel)

– 3 different data structures

– 8 parallel partitions,
24 LEAP memory clients in total

Three data structures:
(1) Tree nodes (low locality)
(2) Center sets (high locality)
(3) Stack (very high locality)

Motivating Example #1

18

• Filtering algorithm for K-means clustering

– Program introspection: number of network messages

Three types of memory clients:
(1) Lots of read misses, few write-backs (tree nodes)
(2) More write-backs than read misses (center sets)
(3) No messages at all (stacks)

Motivating Example #2

19

• FPGA virtualization: mapping multiple programs on FPGA

– Different programs are likely to have different behavior

– May need some quality-of-service (QoS) control

Communication Abstraction

20

• Service connection

– A new communication abstraction for centralized services

• Enabling compilers to freely pick interconnect topology

Service Server
Name: “MEM”

Service Controller
 mkServiceServer(“MEM”);

Request
Response

Module C
mkServiceClient(“MEM”);

Service Client
Name: “MEM”, ID:3

Module B
mkServiceClient(“MEM”);

Service Client
Name: “MEM”, ID:2

Module A
mkServiceClient(“MEM”);

Service Client
Name: “MEM”, ID:1

Compiler-Generated

Arbiter

Arbiter

Service Server
Name: “MEM”

Service Controller
 mkServiceServer(“MEM”);

Request
Response

Module C
mkServiceClient(“MEM”);

Service Client
Name: “MEM”, ID:3

Module B
mkServiceClient(“MEM”);

Service Client
Name: “MEM”, ID:2

Module A
mkServiceClient(“MEM”);

Service Client
Name: “MEM”, ID:1

Service Server
Name: “MEM”

Service Controller
 mkServiceServer(“MEM”);

Request
Response

Module C
mkServiceClient(“MEM”);

Service Client
Name: “MEM”, ID:3

Module B
mkServiceClient(“MEM”);

Service Client
Name: “MEM”, ID:2

Module A
mkServiceClient(“MEM”);

Service Client
Name: “MEM”, ID:1

Service Server
Name: “MEM”

Service Controller
 mkServiceServer(“MEM”);

Request
Response

Module C
mkServiceClient(“MEM”);

Service Client
Name: “MEM”, ID:3

Module B
mkServiceClient(“MEM”);

Service Client
Name: “MEM”, ID:2

Module A
mkServiceClient(“MEM”);

Service Client
Name: “MEM”, ID:1

Compiler-Generated

Network Topologies

21

3 4 5 6 71 2

Request

Client

Controller

Response

Ring Node

Client

1 2

3 4

5 6 7

Ring
Connector

Single Ring

Hierarchical Ring Tree

Low complexity, long latency

Shorter latency, larger area

765

321

4

Tree Router

Highest complexity, shortest latency

Network Profiler

22

Compiler-Generated
Tree Router Tree Router

Latency FIFOs

Interleaver

Instrumentation

Private
Memory

Interleaver

Instrumentation

Private
Memory

Interleaver

Instrumentation

Private
Memory

Interleaver

Instrumentation

Private
Memory

Private Memory Controller Private Memory Controller

Central Cache Controller

DRAM Performance
Controller

Local Memory (DRAM)

Host Virtual Memory Interface

Central Cache Controller

DRAM Performance
Controller

Local Memory (DRAM)

Request
Response

• Goal: to emulate different networks in a single compilation

– Network partitioning, latency and bandwidth are all
dynamically configurable

• Construct a tree network that maximizes performance

– Ideal case:

– More children per node, larger timing pressure on routers

– Fix K = max(#children per node) given a target frequency

Tree-Based Network

23

Timing Pressure

• Construct a K-ary tree that maximizes performance

– Given L: number of leaves (clients)
 K: max number of children per node

– Case 1: clients with homogeneous behavior

• Solution: build a balanced tree with the minimum
number internal nodes

• Example: L=6, K=3

Tree-Based Network

24

Minimizing (leaf depth) Depth = 0

Depth = 1

Depth = 2

• Construct a K-ary tree that maximizes performance

– Case 2: clients with heterogeneous behavior

• Some clients are more sensitive to latency

• Place latency-sensitive clients closer to root

• A balanced tree may not be optimal

• Example: L=6, K=3

Tree-Based Network

25 Solution A

Better!

2d

1d 1d 0.5d 0.5d 0.2d

Depth d=1

Total: 8.4

Depth d=2

Solution B

2d 1d

1d 0.5d

0.5d 0.2d

Total: 8.1

d=1

d=2

d=3

• A clearly-defined, generic memory abstraction

– Separate the user program from the memory system
implementation

• Program introspection

– Understand the program’s memory behavior

• A resource-aware, feedback-driven memory compiler

– Use introspection results as feedback to automatically
construct the “best” memory system for the target
program and platform

Automatic Construction of

Program-Optimized Memories

26

Program Introspection with

Network Profiler

27

• Network profiler measures latency sensitivity per
memory client

Compiler-Generated
Tree Router Tree Router

Latency FIFOs

Interleaver

Instrumentation

Private
Memory

Interleaver

Instrumentation

Private
Memory

Interleaver

Instrumentation

Private
Memory

Interleaver

Instrumentation

Private
Memory

Private Memory Controller Private Memory Controller

Central Cache Controller

DRAM Performance
Controller

Local Memory (DRAM)

Host Virtual Memory Interface

Central Cache Controller

DRAM Performance
Controller

Local Memory (DRAM)

Request
Response

Program Introspection with

Network Profiler

28

• Network profiler measures latency sensitivity per
memory client

Program Introspection with

Network Profiler

29

• Instrumentation logic monitors total number of requests,
request rates, queueing delays…

Compiler-Generated
Tree Router Tree Router

Latency FIFOs

Interleaver

Instrumentation

Private
Memory

Interleaver

Instrumentation

Private
Memory

Interleaver

Instrumentation

Private
Memory

Interleaver

Instrumentation

Private
Memory

Private Memory Controller Private Memory Controller

Central Cache Controller

DRAM Performance
Controller

Local Memory (DRAM)

Host Virtual Memory Interface

Central Cache Controller

DRAM Performance
Controller

Local Memory (DRAM)

Request
Response

• Profiling compilation

– Measure clients’ latency sensitivity, bandwidth demands

• Main compilation: three-stage network construction

– Network partitioning: (FPGA’16)

to balance the total traffic among controller networks

– Topology selection with client placement: to minimize
the network latency impact on program performance

Construction of Optimized

Cache Networks

30 H.-J. Yang et al., “LMC: Automatic Resource-Aware Program-Optimized Memory Partitioning,” in FPGA, 2016.

• Construct a K-ary tree minimizing the total tree weights

– Given 𝑁: # leaves, 𝐾: max # children, 𝐷: max tree depth,

 𝑤𝑛𝑑: weight of leaf 𝑛 at depth 𝑑

– Variables: 𝜆𝑛𝑑 ∈ 0,1 : whether leaf 𝑛 is at depth 𝑑
 𝑥𝑑 ∈ Ζ≥0: # leaves at depth 𝑑
 𝑦𝑑 ∈ Ζ≥0: # internal nodes at depth 𝑑

– Integer linear programming (ILP) Problem:

min
𝜆,𝑥,𝑦
 𝜆𝑛𝑑𝑤𝑛𝑑

𝐷

𝑑=1

𝑁

𝑛=1

Optimized Tree Construction

31

s.t. 𝜆𝑛𝑑𝑑 = 1, ∀𝑛
 𝑥𝑑 = 𝜆𝑛𝑑𝑛 , ∀𝑑
 𝑦𝑑 + 𝑥𝑑 = 𝐾 ∙ 𝑦𝑑−1, ∀𝑑
 𝑦0 = 1 (root)

• Profiling compilation

• Main compilation: three-stage network construction

– Network partitioning (FPGA’16)

– Topology selection with client placement

– Bandwidth allocation: (for multi-program applications)
to control the fairness among multiple programs

Construction of Optimized

Cache Networks

32

Tree Router

3 1 2 2 5
Allocated
Bandwidth:

Evaluation

33

• Filtering algorithm on VC709

– Varying 𝐾 (max number of children per node)

Baseline

Ideal Network

Evaluation

34

• Filtering algorithm on VC709

– Different network configurations

Virtualizing FPGA

35

• Case study: Mergesorter + Filtering algorithm

– Mergesorter: 4 LEAP memories (Filter: 24 memories)

– Performance ratio 𝑟 =
𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑀𝑃

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑆𝑃

– Fairness = 𝑛 1
𝑟𝑖

𝑛
𝑖=1

Conclusion

36

• We introduce a feedback-driven compiler that
automatically constructs memory networks optimized for
the target application.

– A communication abstraction for centralized services

– A dynamically configurable network profiler

– Tree topology selection algorithms

• Future work:

– Resource-aware memory network optimizations for
asymmetric memory controllers

