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Memory: An Indispensable FPGA Component
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Memory: An Indispensable FPGA Component

~1000x Lower Bandwidth
~100x Higher Access Energy
~10x Higher Latency
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Memory: An Indispensable FPGA Component

@ BRAM growing in importance
@ Many applications (search engine, CNNs, ...) BRAM-intensive
@ Can't fully utilize FPGA’'s computation capacity without on-chip memory

Memory Richness Increase
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BRAM’s Evolution

@ Memory-richness growth
@ Organization changes

Memory bits per LE

Evolution of On-Chip Memory in Intel Stratix
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The Key Point

@ BRAMSs can’t be neglected!
@ ~25% of area
@ Should respond to application demands

@ Need BRAM models Set of Set of
@ How efficient is an architecture? GR(?'\I/' Begchnlark
@ What's the best architecture? °|es ircuits

VTR
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BRAM design is Difficult

@ BRAM design is challenging!

@ Analog nature of some components

)

| Sense
Amplifier




BRAM design is Difficult

@ BRAM design is challenging!
@ Analog nature of some components
@ Variability of memory cells
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BRAM design is Difficult

@ BRAM design is challenging!

Analog nature of some components

Variability of memory cells

Custom layout style

Significant FPGA-specific peripheral circuitry

@ Hand design of each candidate BRAM infeasible
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Use existing tools?



BRAM design is Different

@ CACTI underestimates area
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BRAM design is Different

@ Also underestimates read energy
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BRAM design is Different

@ Overestimates operating frequency
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Emerging Memory Technologies

@ Model promising emerging memory technologies
@ Magnetic Tunnel Junction (MTJ)
@ Phase Change Memory (PCM)
@ Resistive RAM (RRAM)

@ Ideal: model any technology with SPICE support

Magnetic Tunnel Junction (MTJ)
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BRAM Design Tool



What do we need?

|

Process
Model

]

|

Architecture
Specifications

Automatic
Transistor
Sizing Tool

File

VTR Architecture Detailed Sizi
Solution

)

17



COFFE: Logic & Routing
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C. Chiasson et al. "COFFE: Fully-Automated Transistor Sizing for FPGAs," FPT 2013 18



COFFE BRAM Flow
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2-Bank SRAM-Based BRAM
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2-Bank SRAM-Based BRAM
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2-Bank SRAM-Based BRAM
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2-Bank SRAM-Based BRAM
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2-Bank SRAM-Based BRAM
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2-Bank SRAM-Based BRAM
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2-Bank SRAM-Based BRAM
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2-Bank SRAM-Based BRAM
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2-Bank SRAM-Based BRAM
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2-Bank SRAM-Based BRAM
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2-Bank MTJ-Based BRAM
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2-Bank MTJ-Based BRAM
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2-Bank MTJ-Based BRAM
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2-Bank MTJ-Based BRAM
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2-Bank MTJ-Based BRAM
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2-Bank MTJ-Based BRAM
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2-Bank MTJ-Based BRAM
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2-Bank MTJ-Based BRAM
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Simulation In Context: SRAM Precharge

LRy

The Rest of SRAM Cells Go here
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Simulation In Context: SRAM Precharge

The |Rest of SRAM Cells G here
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Simulation In Context: SRAM Precharge

Initial Voltage = Vdd-

Amp

ite Driver _‘i
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Simulation In Context: Worst-case SRAM Cell

@ Variation changes SRAM cell read/write currents significantly
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Simulation In Context: Worst-case SRAM Cell

)

@ Using the nominal memory cell will be inaccurate
@ BRAM energy will be underestimated
@ BRAM frequency will be overestimated
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Simulation In Context: Worst-case SRAM Cell

® Variation changes SRAM cell read/write currents significantly

® Using the nominal memory cell will be inaccurate
@ BRAM energy will be underestimated
@ BRAM frequency will be overestimated

@ Don’t have the Spice model for the worst-case cell!
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Simulation In Context: Worst-case SRAM Cell

® Variation changes SRAM cell read/write currents significantly

® Using the nominal memory cell will be inaccurate
@ BRAM energy will be underestimated
@ BRAM frequency will be overestimated

® \We don’t have the Spice model for the worst-case cell!
@ Use Monte Carlo simulation to find distribution of cell properties

44



Monte Carlo Simulation: Worst-case Cell

Read speed
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K. Tatsumura et al."High Density, Low Energy, Magnetic Tunnel Junction Based Block
RAMs for Memory-Rich FPGAs," FPT 2016 45



Simulation In Context: Worst-Case Cell
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Simulation In Context: Worst-Case Cell
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Simulation In Context: Worst-Case Cell
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Simulation In Context: Worst-Case Cell
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Validation and Results



Area Validation

@ Area results align well
with commercial data

50 1 I I | 1 1 I | 1 1 1
SRAM-based BRAM —#—
Stratix IV ——

40
v
N
@
O
o 30
—
(@)
(@
—
~— 20 L
©
Q
| -
<C

10

| | | | | | | | | | |

25 50 75 100 125 150 175 200 225 250 275
BRAM Capacity (Kbits)

51



SRAM-based BRAM Area Breakdown

@ SRAM area dominates
for large BRAMs

@ Smaller BRAMs: other
components relevant
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Area: MTJ vs. SRAM

@ MTJ is more area-efficient

@ |t gets increasingly more
efficient with BRAM size
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Frequency validation

@ Reasonable alignment with
commercial data

@ Less guardband
@ No aggressive banking
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Operating Frequency: MTJ vs. SRAM

1200 1 T T

@ SRAM is faster 1100

@ The gap narrows with
increasing size
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Simulation Results: Energy
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SRAM-based BRAM Narrow Mode

@ FPGA RAM configurable 200 | onan Tan it —8—
@ Often used in narrower - b
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= 150 7
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Energy Per Bit: MTJ vs. SRAM

® MTJs are more efficient with ;|  SRAMFull Width —&—
large BRAM
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Worst-Case Cell Modeling Crucial

@ Use nominal memory cell?
@ Underestimates area and energy
@ Gets more severe with increasing memory size

BRAM Capacity Change in Delay | Change in Energy per
(Kbit) bit

-21% -9%
16 -19% -6%
32 -27% -15%
64 -22% -9%
128 -30% -20%

256 -42% -29%



Architecture Exploration



Architecture Exploration: RAM-Mapping Flow

@ BRAM models generated by COFFE can be used in
architecture exploration

@ Area-oriented RAM mapping
@ 69 industrial circuits
@ Used in development of Stratix V memory architecture

@ We have partial data:
@ Number of logic blocks used
@ Number, Sizes, and types of Logical RAMs

@ Gradually excluding less-memory-rich circuits



SRAM-based BRAM

@ 16K always the best
@ Stratix V-like

Normalized Area (%)
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MTJ-based BRAM

150
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Architecture Exploration: VIR Flow

@ Nine VTR benchmark circuits with memory
@ MTJ vs. SRAM

@ Architecture Parameters

@ 32kb BRAM, every 8 columns
@ MTJ BRAM is smaller - get more 2.3x more RAM blocks per column

@ Ten 6-luts per logic block

64



Architecture Exploration: VTR

@ Changes by switching to MTJ-based BRAMS'

Circuit RAM/LUT Block | Routing | Total Block | Routing | Total | Area-delay
Ratio Area Area Area Delay Delay Delay Product
1%

mcml -11% -5% 5% -19% -6% -10%
LU32PEENg 7% -14% 9% -2% 9% -6% 0 -1%
LUSPEENg 6% -13% 4% -5% -4% 9% 3% -2%
ch_intrinsics 2% -15% -2% -10% |-1% 6% 3% 7%
mkDelayWorker32B 24% -32% -47% -41% |160% -40% 3% -39%
mkPktMerge 198% -57% -48% -53% |141% -34% 12% -47%
mkSMAdapter4B 8% -16% 0 -10% |92% -32% 9% -2%
or1200 2% -5% -4% 0 1% 7% -2% -3%
raygentop 1% -3% 2% -1% 9% -17% -4% -5%
boundtop 1% -3% 1% -1% 8% -5% 0 -2%
Geometric Mean 4% -19% -11% -15% | 25% -16% 2% -14%
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Architecture Exploration: VTR

@ Changes by switching to MTJ-based BRAMS'

Circuit RAM/LUT Block | Routing | Total Block | Routing | Total | Area-delay
Ratio Area Area Area Delay Delay Delay Product
1%

mcml -11% -5% 5% -19% -6% -10%
LU32PEENg 7% -14% 9% -2% 9% -6% 0 -1%
LUSPEENg 6% -13% 4% -5% -4% 9% 3% -2%
ch_intrinsics 2% -15% -2% -10%  |-1% 6% 3% -7%
mkDelayWorker32B 24% -32% -47% -41% | 60% -40% 3% -39%
mkPktMerge 198% -57% -48% -53% |141% -34% 12% -47%
mkSMAdapter4B 8% -16% 0 -10% | 92% -32% 9% -2%
or1200 2% -5% -4% 0 1% 7% -2% -3%
raygentop 1% -3% 2% -1% 9% -17% -4% -5%
boundtop 1% -3% 1% -1% 8% -5% 0 -2%
Geometric Mean 4% -19% -11% -15% |125% -16% 2% -14%

66



Architecture Exploration: VTR

@ Changes by switching to MTJ-based BRAMS'

Circuit RAM/LUT Block | Routing | Total Block | Routing | Total | Area-delay
Ratio Area Area Area Delay Delay Delay Product
1%

mcml -11% -5% 5% -19% -6% -10%
LU32PEENg 7% -14% 9% -2% 9% -6% 0 -1%
LUSPEENg 6% -13% 4% -5% -4% 9% 3% -2%
ch_intrinsics 2% -15% -2% -10% |-1% 6% 3% 7%
mkDelayWorker32B 24% -32% -47% -41% |160% -40% 3% -39%
mkPktMerge 198% -57% -48% -53% |141% -34% 12% -47%
mkSMAdapter4B 8% -16% 0 -10% |92% -32% 9% -2%
or1200 2% -5% -4% 0 1% 7% -2% -3%
raygentop 1% -3% 2% -1% 9% -17% -4% -5%
boundtop 1% -3% 1% -1% 8% -5% 0 -2%
Geometric Mean 4% -19% -11% -15% | 25% -16% 2% -14%
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Architecture Exploration: VTR

d Changes by switching to MTJ-based BRAMSs:

Circuit RAM/LUT Block | Routing | Total Block | Routing | Total | Area-delay
Ratio Area Area Area Delay Delay Delay Product
1%

mcml -11% -5% 5% -19% -6% -10%
LU32PEENg 7% -14% 9% -2% 9% -6% 0 -1%
LUSPEENg 6% -13% 4% -5% -4% 9% 3% -2%
ch_intrinsics 2% -15% -2% -10% |-1% 6% 3% 7%
mkDelayWorker32B  24% -32% -41% |60% -40% 3% -39%
mkPktMerge 198% -57% - -53% |141% -34% 12% -47%
mkSMAdapter4B 8% -16% 0 -10% |92% -32% 9% -2%
or1200 2% -5% -4% 0 1% 7% -2% -3%
raygentop 1% -3% 2% -1% 9% -17% -4% -5%
boundtop 1% -3% 1% -1% 8% -5% 0 -2%
Geometric Mean 4% -19% -11% -15% | 25% -16% 2% -14%
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Architecture Exploration: VTR

@ Changes by switching to MTJ-based BRAMS'

Circuit RAM/LUT Block | Routing | Total Block | Routing | Total | Area-delay
Ratio Area Area Area Delay Delay Delay Product
1%

mcml -11% -5% 5% -19% -6% -10%
LU32PEENg 7% -14% 9% -2% 9% -6% 0 -1%
LUSPEENg 6% -13% 4% -5% -4% 9% 3% -2%
ch_intrinsics 2% -15% -2% -10% |-1% 6% 3% 7%
mkDelayWorker32B 24% -32% -47% -“41% | 60% -40% 3% -39%
mkPktMerge 198% -57% -48% -53% |141% -34% 12% -47%
mkSMAdapter4B 8% -16% 0 -10% | 92% -32% 9% -2%
or1200 2% -5% -4% 0 1% 7% -2% -3%
raygentop 1% -3% 2% -1% 9% -17% -4% -5%
boundtop 1% -3% 1% -1% 8% -5% 0 -2%
Geometric Mean 4% -19% -11% -15% | 25% -16% 2% -14%
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Architecture Exploration: VTR

@ Changes by switching to MTJ-based BRAMS'

Circuit RAM/LUT Block | Routing | Total Block | Routing | Total | Area-delay
Ratio Area Area Area Delay Delay Delay Product
1%

mcml -11% -5% 5% -19% -6% -10%
LU32PEENg 7% -14% 9% -2% 9% -6% 0 -1%
LUSPEENg 6% -13% 4% -5% -4% 9% 3% -2%
ch_intrinsics 2% -15% -2% -10% |-1% 6% 3% 7%
mkDelayWorker32B 24% -32% -47% -41% -40% 3% -39%
mkPktMerge 198% -57% -48% -53% -34% 12% -47%
mkSMAdapter4B 8% -16% 0 -10% -32% 9% -2%
or1200 2% -5% -4% 0 1% 7% -2% -3%
raygentop 1% -3% 2% -1% 9% -17% -4% -5%
boundtop 1% -3% 1% -1% 8% -5% 0 -2%
Geometric Mean 4% -19% -11% -15% | 25% -16% 2% -14%
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Architecture Exploration: VTR

v Changes by switching to MTJ-based BRAMS'

Ratio Area Area Area Delay Delay Delay Product
mcml 1% -11% -5% 5% -19% -6% -10%
LU32PEEng 7% -14% 9% -2% 9% -6% 0 -1%
LUSBPEENg 6% -13% 4% -5% -4% 9% 3% -2%
ch_intrinsics 2% -15% -2% -10% |-1% 6% 3% -7%
mkDelayWorker32B 24% -32% -47% -41% | 60% 3% -39%
mkPktMerge 198% -57% -48% -53% | 141% 12% -47%
mkSMAdapter4B 8% -16% 0 -10% | 92% 9% -2%
or1200 2% -5% -4% 0 1% -7% -2% -3%
raygentop 1% -3% 2% -1% 9% -17% -4% -5%
boundtop 1% -3% 1% -1% 8% -5% 0 -2%
Geometric Mean 4% -19% -11% -15% |125% -16% 2% -14%
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Architecture Exploration: VTR

@ Changes by switching to MTJ-based BRAMS'

Circuit RAM/LUT Block | Routing | Total Block | Routing | Total | Area-delay
Ratio Area Area Area Delay Delay Delay Product
1%

mcml -11% -5% 5% -19% -6% -10%
LU32PEENg 7% -14% 9% -2% 9% -6% 0 -1%
LUSPEENg 6% -13% 4% -5% -4% 9% 3% -2%
ch_intrinsics 2% -15% -2% -10% |-1% 6% 3% 7%
mkDelayWorker32B 24% -32% -47% -41% |160% -40% 3% -39%
mkPktMerge 198% -57% -48% -53% |141% -34% 12% -47%
mkSMAdapter4B 8% -16% 0 -10% |92% -32% 9% -2%
or1200 2% -5% -4% 0 1% 7% -2% -3%
raygentop 1% -3% 2% -1% 9% -17% -4% -5%
boundtop 1% -3% 1% -1% 8% -5% 0 -2%
Geometric Mean 4% -19% -11% -15% | 25% -16% 2% -14%
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Architecture Exploration: VTR

v Changes by switching to MTJ-based BRAMS'

Area-delay

Product

-10%
-1%
-2%
-7%
-39%
-47%
-2%
-3%
-5%
-2%

Ratio Area Area Area Delay Delay Delay

mcml 1% -11% -5% 5% -19% -6%
LU32PEENg 7% -14% 9% -2% 9% -6% 0
LUSPEENg 6% -13% 4% -5% -4% 9% 3%
ch_intrinsics 2% -15% -2% -10% |-1% 6% 3%
mkDelayWorker32B 24% -32% -47% -41% |160% -40% 3%
mkPktMerge 198% -57% -48% -53% |141% -34% 12%
mkSMAdapter4B 8% -16% 0 -10% |92% -32% 9%
or1200 2% -5% -4% 0 1% 7% -2%
raygentop 1% -3% 2% -1% 9% -17% -4%
boundtop 1% -3% 1% -1% 8% -5% 0
Geometric Mean 4% -19% -11% -15% |125% -16% 2%

“14% |
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Conclusion

@ First transistor sizing tool capable of BRAM modeling
@ SRAM-based
@ MTJ-based

@ Simulation results align well with available commercial data
@ COFFE now enables BRAM architecture exploration!

@ RAM-Mapping

@ VTR
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