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Memory: An Indispensable FPGA Component

2

DDR 
Memory

DDR 
MemoryD

D
R

 
C

on
tro

lle
r DDR 

Memory
Logic 
Blocks

BRAM



Memory: An Indispensable FPGA Component

3

DDR 
Memory

DDR 
MemoryD

D
R

 
C

on
tro

lle
r DDR 

Memory



Memory: An Indispensable FPGA Component

4

DDR 
Memory

DDR 
MemoryD

D
R

 
C

on
tro

lle
r DDR 

Memory

~1000x Lower Bandwidth
~100x Higher Access Energy
~10x Higher Latency



Memory: An Indispensable FPGA Component
BRAM growing in importance

Many applications (search engine, CNNs, …) BRAM-intensive
Can’t fully utilize FPGA’s computation capacity without on-chip memory
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BRAM’s Evolution
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Memory-richness growth
Organization changes



The Key Point
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BRAMs can’t be neglected!
~25% of area
Should respond to application demands

Need BRAM models
How efficient is an architecture?
What’s the best architecture?
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BRAM design is Difficult
BRAM design is challenging!

Analog nature of some components
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BRAM design is Difficult
BRAM design is challenging!

Analog nature of some components
Variability of memory cells
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BRAM design is Difficult
BRAM design is challenging!

Analog nature of some components
Variability of memory cells
Custom layout style
Significant FPGA-specific peripheral circuitry

Hand design of each candidate BRAM infeasible
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Use existing tools?
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BRAM design is Different
CACTI underestimates area
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~1.9x

~2.8x



BRAM design is Different
Also underestimates read energy
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~8.1x
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BRAM design is Different
Overestimates operating frequency
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~4.7x

~3.9x



Emerging Memory Technologies
Model promising emerging memory technologies

Magnetic Tunnel Junction (MTJ)
Phase Change Memory (PCM)
Resistive RAM (RRAM)

Ideal: model any technology with SPICE support
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BRAM Design Tool
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What do we need?
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COFFE: Logic & Routing

18C. Chiasson et al. "COFFE: Fully-Automated Transistor  Sizing for FPGAs," FPT 2013



COFFE BRAM Flow
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2-Bank SRAM-Based BRAM
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2-Bank SRAM-Based BRAM
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2-Bank SRAM-Based BRAM
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2-Bank SRAM-Based BRAM
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2-Bank MTJ-Based BRAM
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2-Bank MTJ-Based BRAM
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2-Bank MTJ-Based BRAM
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2-Bank MTJ-Based BRAM

35R
ow

 D
ec

od
er

s 
an

d 
W

or
dl

in
e 

D
riv

er
s

Bank #1 
Memory 

Cell Array

Write 
Driver

Write 
Driver

Sense 
Amplifier

Column Selector 
and Predischarger

Reference Cells

Bank #2 
Memory 

Cell Array

Write 
Driver

Write 
Driver

Sense 
Amplifier

Reference Cells

Column Selector 
and Predischarger C

ol
um

n 
D

ec
od

er
s

Memory 
Cells

Traditional 
Decoders

Read/Write 
Circuitry



2-Bank MTJ-Based BRAM

36

Memory 
Cells

Traditional 
Decoders

Width- 
Configurability 

Circuitry

Read/Write 
Circuitry

R
ow

 D
ec

od
er

s 
an

d 
W

or
dl

in
e 

D
riv

er
s

C
ol

um
n 

D
ec

od
er

s
W

id
th

-C
on

fig
ur

ab
le

 
D

ec
od

er
s

Bank #1 
Memory 

Cell Array

Write 
Driver

Write 
Driver

Sense 
Amplifier

Column Selector 
and Predischarger

Reference Cells

Bank #2 
Memory 

Cell Array

Write 
Driver

Write 
Driver

Sense 
Amplifier

Reference Cells

Input 
Crossbar 
and Level 

Shifter 
Column Selector 

and Predischarger



2-Bank MTJ-Based BRAM

37

Memory 
Cells

Traditional 
Decoders

To/From  
Routing

Pipeline 
Registers

Width- 
Configurability 

Circuitry

Read/Write 
Circuitry

R
ow

 D
ec

od
er

s 
an

d 
W

or
dl

in
e 

D
riv

er
s

C
ol

um
n 

D
ec

od
er

s
W

id
th

-C
on

fig
ur

ab
le

 
D

ec
od

er
s

Bank #1 
Memory 

Cell Array

Write 
Driver

Write 
Driver

Sense 
Amplifier

Column Selector 
and Predischarger

Reference Cells

Bank #2 
Memory 

Cell Array

Write 
Driver

Write 
Driver

Sense 
Amplifier

Reference Cells

Input 
Crossbar 
and Level 

Shifter 
Column Selector 

and Predischarger



Simulation In Context: SRAM Precharge
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Simulation In Context: SRAM Precharge
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Simulation In Context: SRAM Precharge
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Simulation In Context: Worst-case SRAM Cell
Variation changes SRAM cell read/write currents significantly
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Simulation In Context: Worst-case SRAM Cell

Using the nominal memory cell will be inaccurate
BRAM energy will be underestimated
BRAM frequency will be overestimated
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Simulation In Context: Worst-case SRAM Cell

Don’t have the Spice model for the worst-case cell!
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Simulation In Context: Worst-case SRAM Cell

Use Monte Carlo simulation to find distribution of cell properties
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Monte Carlo Simulation: Worst-case Cell
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Simulation In Context: Worst-Case Cell
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Simulation In Context: Worst-Case Cell
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Simulation In Context: Worst-Case Cell
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Simulation In Context: Worst-Case Cell
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Validation and Results

50



Area Validation

51

Area results align well 
with commercial data



SRAM-based BRAM Area Breakdown
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SRAM area dominates 
for large BRAMs
Smaller BRAMs: other 
components relevant



Area: MTJ vs. SRAM
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~3.1x

~1.6x

MTJ is more area-efficient
It gets increasingly more 
efficient with BRAM size



Frequency validation
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Reasonable alignment with 
commercial data
Less guardband
No aggressive banking



Operating Frequency: MTJ vs. SRAM
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SRAM is faster
The gap narrows with 
increasing size

~3.6x

~1.6x



Simulation Results: Energy
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SRAM-based BRAM Narrow Mode
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FPGA RAM configurable
Often used in narrower 
modes 
Energy mostly unaffected



Energy Per Bit: MTJ vs. SRAM
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MTJs are more efficient with 
large BRAM
MTJ narrow mode more 
efficient

~3.2x

~1.7x



Worst-Case Cell Modeling Crucial
Use nominal memory cell?

Underestimates area and energy
Gets more severe with increasing memory size
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BRAM Capacity 
(Kbit)

Change in Delay Change in Energy per
bit

8 -21% -9%
16 -19% -6%
32 -27% -15%
64 -22% -9%
128 -30% -20%
256 -42% -29%



Architecture Exploration
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Architecture Exploration: RAM-Mapping Flow
BRAM models generated by COFFE can be used in 
architecture exploration
Area-oriented RAM mapping

69 industrial circuits
Used in development of Stratix V memory architecture
We have partial data:

Number of logic blocks used
Number, Sizes, and types of Logical RAMs

Gradually excluding less-memory-rich circuits
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SRAM-based BRAM
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16K always the best
Stratix V-like

Memory richness



MTJ-based BRAM
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MTJ always saves area
The best architecture 
changes

32k or 64k best

Memory richness

~26%



Architecture Exploration: VTR Flow
Nine VTR benchmark circuits with memory
MTJ vs. SRAM
Architecture Parameters

32kb BRAM, every 8 columns
MTJ BRAM is smaller à get more 2.3x more RAM blocks per column

Ten 6-luts per logic block
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Architecture Exploration: VTR
Changes by switching to MTJ-based BRAMs:
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Circuit RAM/LUT 
Ratio

Block 
Area

Routing 
Area

Total 
Area

Block 
Delay

Routing 
Delay

Total 
Delay

Area-delay 
Product

mcml 1% -11% 0 -5% 5% -19% -6% -10%
LU32PEEng 7% -14% 9% -2% 9% -6% 0 -1%
LU8PEEng 6% -13% 4% -5% -4% 9% 3% -2%
ch_intrinsics 2% -15% -2% -10% -1% 6% 3% -7%
mkDelayWorker32B 24% -32% -47% -41% 60% -40% 3% -39%
mkPktMerge 198% -57% -48% -53% 141% -34% 12% -47%
mkSMAdapter4B 8% -16% 0 -10% 92% -32% 9% -2%
or1200 2% -5% -4% 0 1% -7% -2% -3%
raygentop 1% -3% 2% -1% 9% -17% -4% -5%
boundtop 1% -3% 1% -1% 8% -5% 0 -2%
Geometric Mean 4% -19% -11% -15% 25% -16% 2% -14%



Architecture Exploration: VTR
Changes by switching to MTJ-based BRAMs:
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Circuit RAM/LUT 
Ratio

Block 
Area
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mcml 1% -11% 0 -5% 5% -19% -6% -10%
LU32PEEng 7% -14% 9% -2% 9% -6% 0 -1%
LU8PEEng 6% -13% 4% -5% -4% 9% 3% -2%
ch_intrinsics 2% -15% -2% -10% -1% 6% 3% -7%
mkDelayWorker32B 24% -32% -47% -41% 60% -40% 3% -39%
mkPktMerge 198% -57% -48% -53% 141% -34% 12% -47%
mkSMAdapter4B 8% -16% 0 -10% 92% -32% 9% -2%
or1200 2% -5% -4% 0 1% -7% -2% -3%
raygentop 1% -3% 2% -1% 9% -17% -4% -5%
boundtop 1% -3% 1% -1% 8% -5% 0 -2%
Geometric Mean 4% -19% -11% -15% 25% -16% 2% -14%
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Geometric Mean 4% -19% -11% -15% 25% -16% 2% -14%



Architecture Exploration: VTR
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Architecture Exploration: VTR
Changes by switching to MTJ-based BRAMs:
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LU8PEEng 6% -13% 4% -5% -4% 9% 3% -2%
ch_intrinsics 2% -15% -2% -10% -1% 6% 3% -7%
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mkSMAdapter4B 8% -16% 0 -10% 92% -32% 9% -2%
or1200 2% -5% -4% 0 1% -7% -2% -3%
raygentop 1% -3% 2% -1% 9% -17% -4% -5%
boundtop 1% -3% 1% -1% 8% -5% 0 -2%
Geometric Mean 4% -19% -11% -15% 25% -16% 2% -14%



Architecture Exploration: VTR
Changes by switching to MTJ-based BRAMs:
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Circuit RAM/LUT 
Ratio

Block 
Area

Routing 
Area

Total 
Area

Block 
Delay

Routing 
Delay

Total 
Delay

Area-delay 
Product

mcml 1% -11% 0 -5% 5% -19% -6% -10%
LU32PEEng 7% -14% 9% -2% 9% -6% 0 -1%
LU8PEEng 6% -13% 4% -5% -4% 9% 3% -2%
ch_intrinsics 2% -15% -2% -10% -1% 6% 3% -7%
mkDelayWorker32B 24% -32% -47% -41% 60% -40% 3% -39%
mkPktMerge 198% -57% -48% -53% 141% -34% 12% -47%
mkSMAdapter4B 8% -16% 0 -10% 92% -32% 9% -2%
or1200 2% -5% -4% 0 1% -7% -2% -3%
raygentop 1% -3% 2% -1% 9% -17% -4% -5%
boundtop 1% -3% 1% -1% 8% -5% 0 -2%
Geometric Mean 4% -19% -11% -15% 25% -16% 2% -14%



Architecture Exploration: VTR
Changes by switching to MTJ-based BRAMs:
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Circuit RAM/LUT 
Ratio

Block 
Area

Routing 
Area

Total 
Area

Block 
Delay

Routing 
Delay

Total 
Delay

Area-delay 
Product

mcml 1% -11% 0 -5% 5% -19% -6% -10%
LU32PEEng 7% -14% 9% -2% 9% -6% 0 -1%
LU8PEEng 6% -13% 4% -5% -4% 9% 3% -2%
ch_intrinsics 2% -15% -2% -10% -1% 6% 3% -7%
mkDelayWorker32B 24% -32% -47% -41% 60% -40% 3% -39%
mkPktMerge 198% -57% -48% -53% 141% -34% 12% -47%
mkSMAdapter4B 8% -16% 0 -10% 92% -32% 9% -2%
or1200 2% -5% -4% 0 1% -7% -2% -3%
raygentop 1% -3% 2% -1% 9% -17% -4% -5%
boundtop 1% -3% 1% -1% 8% -5% 0 -2%
Geometric Mean 4% -19% -11% -15% 25% -16% 2% -14%



Conclusion
First transistor sizing tool capable of BRAM modeling

SRAM-based
MTJ-based

Simulation results align well with available commercial data
COFFE now enables BRAM architecture exploration!

RAM-Mapping
VTR
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