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• Traditionally: Same bitstream for every chip.
• Poor performance and energy

• Mapping using actual delays reduces delay and 
energy.
• Mapping can take days.

• Lightweight mapping
combines best of both.
• 77% of maximum delay

benefit is achievable
in 18 seconds.
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• We achieved a lightweight mapping.
• Using online measurement

• Adapting precomputed alternatives

• We developed 5 algorithms at intermediate points.
• Characterized time and quality for all algorithms.
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• Introduction

• Lightweight solutions

• Experiments

• Conclusions
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• Precompute alternatives for 2-point nets.
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Net 1: base
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• Original CYA
• Developed for defect-tolerance.

• Functionality check at load-time: 1 or 0

• CYA for variation
• Binary timing circuits: late or not

• But: alternatives may conflict.
• Can run out of good alternatives.

• Delay unknown, so cannot prioritize nets.
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[Levine, FCCM 2012]

• Adds 4% area overhead to Stratix-IV CLB.
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Locate slow 
resource

Repair 
resource

Based on COSMIC TRIP
[Giesen, FCCM 2016] using CYA
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Measure delays

Locate slowest LUT

Randomly select 
input link

Replace link with 
alternative

Measure link delay

Delay 
improved? YesNo



19

• 20 chips, random data input



19

• 20 chips, random data input

• Upcoming results reported at 95% yield point.



19

• 20 chips, random data input

• Upcoming results reported at 95% yield point.



19

• 20 chips, random data input

• Upcoming results reported at 95% yield point.



20



• VPR 5.0.2 with CYA extension
• Custom timing simulator for Incremental CYA

• Toronto20 benchmarks

• 22-nm CMOS, 0.8 V nominal

• Architecture similar to Stratix-IV
• 4 LUTs, 16 CLB inputs, and 16 tracks extra

• 64 alternatives per 2-point net
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• OMFA mapping has outrageous timing margin.

• FK mapping typically lasts days.
• Must be repeated for each chip.

• Fast algorithms that eliminate most of timing 
margin are feasible.
• CYA achieves >50% of delay and energy gain.

• Incremental CYA eliminates >50% of energy and >70% 
delay gain. 25






