
Quality-Time Tradeoffs in
Component-Specific Mapping

Or: How to Train Your Dynamically Reconfigurable
Array of Gates with Outrageous Network-delays

Hans Giesen, Raphael Rubin,
Benjamin Gojman, André DeHon

University of Pennsylvania

February 23, 2017

• Traditionally: Same bitstream for every chip.
• Poor performance and energy

2

• Traditionally: Same bitstream for every chip.
• Poor performance and energy

• Mapping using actual delays reduces delay and
energy.
• Mapping can take days.

2

• Traditionally: Same bitstream for every chip.
• Poor performance and energy

• Mapping using actual delays reduces delay and
energy.
• Mapping can take days.

• Lightweight mapping
combines best of both.
• 77% of maximum delay

benefit is achievable
in 18 seconds.

2

• We achieved a lightweight mapping.
• Using online measurement

• Adapting precomputed alternatives

3

• We achieved a lightweight mapping.
• Using online measurement

• Adapting precomputed alternatives

• We developed 5 algorithms at intermediate points.
• Characterized time and quality for all algorithms.

3

• Introduction

• Lightweight solutions

• Experiments

• Conclusions

4

5

6

Delay: 1 ns 1 ns 1 ns

6

Delay: 1 ns 1 ns 1 ns

Clock period: 1 ns

7

Delay: 1.3 ns 0.9 ns 1.1 ns

Fast

Slow

7

Delay: 1.3 ns 0.9 ns 1.1 ns

Clock period: 1.3 ns

Fast

Slow

8

• One-Mapping-Fits-All (OMFA)

8
Clock
period

• One-Mapping-Fits-All (OMFA)

8
Clock
period

Nominal
Delay

• One-Mapping-Fits-All (OMFA)

8
Clock
period

Nominal
Delay

Timing
margin

• One-Mapping-Fits-All (OMFA)

8
Clock
period

Nominal
Delay

Timing
margin

9

Delay: 1.3 ns 0.9 ns 1.1 ns

Clock period: 1.3 ns

Fast

Slow

9

Delay: 1 ns 0.9 ns 0.9 ns

Clock period: 1 ns

Fast

Slow

10

Delay: 0.9 ns 1.3 ns 1 ns

Fast

Slow

10

Delay: 0.9 ns 1.3 ns 1 ns

Clock period: 1.3 ns

Fast

Slow

10

Delay: 0.9 ns

Fast

Slow

1 ns 0.9 ns

10

Delay: 0.9 ns

Fast

Slow

1 ns 0.9 ns

Clock period: 1 ns

Measure all
path delays

Component-
specific

mapping

11

Measure all
path delays

Component-
specific

mapping

11

using GROK-LAB
or GROK-INT [Gojman, 2014]

Measure all
path delays

Component-
specific

mapping

11

using GROK-LAB
or GROK-INT [Gojman, 2014] using PathFinder

Measure all
path delays

Component-
specific

mapping

11

using GROK-LAB
or GROK-INT [Gojman, 2014]

Can take days

using PathFinder

Measure all
path delays

Component-
specific

mapping

11

using GROK-LAB
or GROK-INT [Gojman, 2014]

Can take hoursCan take days

using PathFinder

Measure all
path delays

Component-
specific

mapping

11

using GROK-LAB
or GROK-INT [Gojman, 2014]

Can take hoursCan take days

For every chip

using PathFinder

Measure all
path delays

Component-
specific

mapping

11

using GROK-LAB
or GROK-INT [Gojman, 2014]

Can take hoursCan take days

For every chip

using PathFinder

12

• Precompute alternatives for 2-point nets.

13

• Precompute alternatives for 2-point nets.

13

Net 1: base
Net 2: base

• Precompute alternatives for 2-point nets.

13

Net 1: alternative 1
Net 2: base

• Precompute alternatives for 2-point nets.

13

Net 1: alternative 2
Net 2: base

• Precompute alternatives for 2-point nets.

13

Net 1: alternative 3
Net 2: base

• Precompute alternatives for 2-point nets.

13

Net 1: base
Net 2: base

• Precompute alternatives for 2-point nets.

13

Net 1: base
Net 2: alternative 1

• Precompute alternatives for 2-point nets.

13

Net 1: base
Net 2: alternative 2

• Precompute alternatives for 2-point nets.

13

Net 1: base
Net 2: alternative 3

• Original CYA
• Developed for defect-tolerance.

• Functionality check at load-time: 1 or 0

14

• Original CYA
• Developed for defect-tolerance.

• Functionality check at load-time: 1 or 0

• CYA for variation
• Binary timing circuits: late or not

14

• Original CYA
• Developed for defect-tolerance.

• Functionality check at load-time: 1 or 0

• CYA for variation
• Binary timing circuits: late or not

• But: alternatives may conflict.
• Can run out of good alternatives.

• Delay unknown, so cannot prioritize nets.

14

15

15

15

15

15

15

D Q

R

S
Q

Output

16

D Q
D Q

Scan-controlled
reset

Operational
clock

Early
sample clock

Input

[Levine, FCCM 2012]

• Adds 4% area overhead to Stratix-IV CLB.

17

Locate slow
resource

Repair
resource

17

Locate slow
resource

Repair
resource

Based on COSMIC TRIP
[Giesen, FCCM 2016]

17

Locate slow
resource

Repair
resource

Based on COSMIC TRIP
[Giesen, FCCM 2016] using CYA

18

Measure delays

Locate slowest LUT

Randomly select
input link

Replace link with
alternative

Measure link delay

Delay
improved? YesNo

19

• 20 chips, random data input

19

• 20 chips, random data input

• Upcoming results reported at 95% yield point.

19

• 20 chips, random data input

• Upcoming results reported at 95% yield point.

19

• 20 chips, random data input

• Upcoming results reported at 95% yield point.

20

• VPR 5.0.2 with CYA extension
• Custom timing simulator for Incremental CYA

• Toronto20 benchmarks

• 22-nm CMOS, 0.8 V nominal

• Architecture similar to Stratix-IV
• 4 LUTs, 16 CLB inputs, and 16 tracks extra

• 64 alternatives per 2-point net

21

22

22

22

22

22

23

23

23

23

23

24

• OMFA mapping has outrageous timing margin.

• FK mapping typically lasts days.
• Must be repeated for each chip.

• Fast algorithms that eliminate most of timing
margin are feasible.
• CYA achieves >50% of delay and energy gain.

• Incremental CYA eliminates >50% of energy and >70%
delay gain. 25

