
FINN: A Framework for Fast, Scalable
Binarized Neural Network Inference
Yaman Umuroglu (XIR & NTNU), Nick Fraser (XIR & USydney), Giulio
Gambardella (XIR), Michaela Blott (XIR), Philip Leong (USydney),
Magnus Jahre (NTNU), Kees Vissers (XSJ)

© Copyright 2016 Xilinx
.

Page 2

Executive Summary

FPGAs can do trillions of binary operations per second & binarized neural nets can put this to good use.

Inference accelerators that classify 10ks to Ms of images per second, at < 25 W, on today’s hardware.

© Copyright 2016 Xilinx
.

Page 3

Introduction

Framework & Architecture

Experimental Evaluation

Conclusions

© Copyright 2016 Xilinx
.

Page 4

Inference with Convolutional Neural Networks (CNNs)

«cat»



billions of floating point multiply-accumulate ops

(up to several joules of energy)

off-chip, tens of megabytes of floating point weight data

(from training)

image to be

classified

© Copyright 2016 Xilinx
.

Page 5

Some Emerging Alternatives for Energy-Efficient Inference

Synapse and neuron pruning

(Han et al., Learning both Weights and Connections for

Efficient Neural Networks)

Quantization

Sparse, irregular computation --

difficult to process efficiently

Regular computation, smaller

datapaths, fewer bits per weight

© Copyright 2016 Xilinx
.

The extreme case of quantization

– Permit only two values: +1 and -1

– Binary weights, binary activations

– Trained from scratch, not truncated FP

Courbariaux and Hubara et al. (NIPS 2016)

– Open source training flow

– Standard “deep learning” layers

• Convolutions, max pooling, batch norm, fully connected…

– Competitive results on three smaller benchmarks

Page 6

Binarized Neural Networks (BNNs)

MNIST SVHN CIFAR-10

Binary weights &

activations

0.96% 2.53% 10.15%

FP weights &

activations

0.94% 1.69% 7.62%

BNN accuracy loss -0.2% -0.84% -2.53%

% classification error

(lower is better)

© Copyright 2016 Xilinx
.

Accuracy of BNNs on ImageNet
Published Results for FP CNNs, BNNs and Extreme Reduced Precision NNs

Page 7

• BNNs are new and accuracy results are improving rapidly

0.00

10.00

20.00

30.00

40.00

50.00

60.00

06/07/2009 18/11/2010 01/04/2012 14/08/2013 27/12/2014 10/05/2016 22/09/2017

Top-5 Error (ImageNet)

BNN CNN Reduced Precision

© Copyright 2016 Xilinx
.

On-chip weights

~70 M

~10 M

~5 M

~2 M

Much smaller datapaths

– Multiply becomes XNOR, addition becomes popcount

– No DSPs needed, everything in LUTs

– Lower cost per op = more ops every cycle, trillions of ops per second

Much smaller weights

– Large networks can fit entirely into on-chip memory (OCM)

– More bandwidth, less energy compared to off-chip

Page 8

Potential of BNNs on FPGAs

Precision

1b

8b

16b

32b

= potential for blazing fast

inference with large BNNs

on today’s hardware

Xilinx UltraScale+ MPSoC ZU19EG

(Vivado HLS, conservative estimates)

3
0
x

Peak GOPS

~66 000

~4 000

~1 000

~300

2
0
0
x

© Copyright 2016 Xilinx
.

FINN, a Framework for Fast, Scalable

Binarized Neural Network Inference

Page 9

How do we exploit this potential?

?

© Copyright 2016 Xilinx
.

Page 10

Introduction

Framework & Architecture

Experimental Evaluation

Conclusions

© Copyright 2016 Xilinx
.

Page 11

FINN at a glance

1. Train your BNN

(Courbariaux et al.)
2. Determine your

FPS requirements

3. Run FINNthesizer

4. Use resulting

accelerator

© Copyright 2016 Xilinx
.

One size does not fit all

– Generate tailored hardware for network and use-case

Stay on-chip

– Higher energy efficiency and bandwidth

Support portability and rapid exploration

– Vivado HLS (High-Level Synthesis)

Simplify with BNN-specific optimizations

– Exploit “compile time” optimizations to simplify the generated hardware

– E.g. batchnorm and activation => thresholding. See details in the paper

Page 12

FINN Design Principles

© Copyright 2016 Xilinx
.

One hardware layer per BNN layer, parameters built into bitstream

– Both inter- and intra-layer parallelism

Heterogeneous: Avoid “one-size-fits-all” penalties

– Allocate compute resources according to FPS and network requirements

Streaming: Maximize throughput, minimize latency

– Overlapping computation and communication, batch size = 1

Page 13

Heterogeneous Streaming Architecture

Layer 0 Layer 1 Layer N

…image result

FPGA

BNN topology

1
M

 o
p
s

1
0
M

 o
p
s

1x PE 10x PE 1x FPS

10x FPS
10x PE 100x PE

© Copyright 2016 Xilinx
.

Core computational element of FINN, tiled matrix-vector multiply

Computes a (P) row x (S) column chunk of matrix every cycle, per-layer configurable tile size

Page 14

The Matrix-Vector Threshold Unit (MVTU)

broadcast S bits of

input every cycle

buffer input for reuse

(neuron folding)

multiply-accumulate, but with

XNOR and popcount instead

apply thresholding and send

to next layer

© Copyright 2016 Xilinx
.

Lower convolutions to matrix-matrix multiplication, 𝑾 ⋅ 𝑰

– 𝑊 : filter matrix (generated offline)

– 𝐼: image matrix (generated on-the-fly)

Two components:

Page 15

Convolutional Layers

sliding

window unit

(SWU)

MVTU

slide window

over image

(generate 𝐼 matrix)

matrix-matrix

multiply, one vector

at a time

convolution layer

© Copyright 2016 Xilinx
.

Time-multiplex (or fold) real neurons onto hardware neurons

– Control folding via number of PEs and SIMD lanes in each layer

Folding computed by FINNthesizer to satisfy FPS requirements

– FPS for one layer = clock frequency / folding factor

– FPS of streaming system = minimum FPS of any layer

– FINNthesizer will balance folding factors to match FPS across layers

Page 16

Folding

© Copyright 2016 Xilinx
.

Page 17

Introduction

Framework & Architecture

Experimental Evaluation

Conclusions

© Copyright 2016 Xilinx
.

Page 18

Experimental Setup

ZC706 development platform:

Z7045 All-Programmable SoC

2 ARM Cortex-A9 cores

218k LUTs, 545 BRAMs

10000 test images in PS DDR

– Streamed in-out via DMA

FINN-generated accelerator on PL

– Running at 200 MHz

ARM core:

– launches accelerator

– measures time

– verifies results

PMBus and wall power monitoring

– Idle wall power ~7 W

© Copyright 2016 Xilinx
.

Page 19

Test Networks & Scenarios

Scenario:

– fix: assume I/O bound, achieve 9000 FPS

– max: achieve as high FPS as possible

«CNV

BNN Topology:

– SFC: small fully-connected, 0.6 MOP per image

– LFC: large fully-connected, 5.8 MOP per image

– CNV: convolutional, 112.5 MOP per image

– SFC & LFC on MNIST, binarized inputs and outputs

– CNV on CIFAR-10 and SVHN, 8-bit inputs, 16-bit

outputs

-fix»

© Copyright 2016 Xilinx
.

Prototype FPS GOPS BRAM LUT Latency [us] Power [W]

SFC-max 12.3 M 8 265 4.5 91 131 (42%) 0.31 21.2

LFC-max 1.5 M 9 085 396 82 988 (38%) 2.44 22.6

CNV-max 21.9 k 2 465 186 46 253 (21%) 283 11.7

Page 20

Results – Maximum Throughput

Unprecedented

classification

rates

Ultra-low latency

For robotics, AR, UAVs

© Copyright 2016 Xilinx
.

Prototype FPS GOPS BRAM LUT Latency [us] Power [W]

SFC-fix 12.2 k 8 16 5 155 (3%) 240 8.1

LFC-fix 12.2 k 71 114.5 5 636 (3%) 282 7.9

CNV-fix 11.6 k 1 306 152.5 29 274 (13%) 550 10

Page 21

Results – 9k FPS target

Scalability to

small footprints

12 kFPS with

~1-3 W over idle

power

FPS goal

exceeded

(integer folding

factors)

© Copyright 2016 Xilinx
.

Massive but slow-clock parallelism:

good energy efficiency

– Use 250 kHz clock for 12M FPS prototype:

15 kFPS on MNIST with 0.2 W chip power

– Observed that slowed-down SFC-max 2x

more energy efficient than SFC-fix

Page 22

Results – Other Highlights

Up to 58% of roofline performance

estimate

– SFC-max: DRAM bandwidth-bound

– LFC-max: resource bound (BRAM)

– CNV-max: architecture bound (SWU)

2x

© Copyright 2016 Xilinx
.

MNIST, Alemdar et al. 97.8% 255.1 k 0.3 W - 806 - 2

CIFAR-10, TrueNorth 83.4% 1.2 k 0.2 W - 6 - 1

SVHN, TrueNorth 96.7% 2.5 k 0.3 W - 10 - 1

How to compare neural network accelerators across precisions and devices?

– Accuracy, images per second, energy efficiency

Page 23

Comparison to Prior Work

10 – 100x better

performance

CIFAR-10/SVHN energy efficiency

comparable to TrueNorth ASIC

Accuracy FPS Power

(chip)

Power

(wall)

kFPS / Watt

(chip)

kFPS / Watt

(wall)

Precision

MNIST, SFC-max 95.8% 12.3 M 7.3 W 21.2 W 1693 583 1

MNIST, LFC-max 98.4% 1.5 M 8.8 W 22.6 W 177 269 1

CIFAR-10, CNV-max 80.1% 21.9 k 3.6 W 11.7 W 6 2 1

SVHN, CNV-max 94.9% 21.9 k 3.6 W 11.7 W 6 2 1

Max accuracy

loss: ~3%

P
ri

o
r

W
o

rk
F

IN
N

© Copyright 2016 Xilinx
.

Page 24

Introduction

Framework & Architecture

Experimental Evaluation

Conclusions

© Copyright 2016 Xilinx
.

FPGAs can do trillions of binary operations per second.

FINN can build BNN inference accelerators that classify 10Ks to Ms of images per second,

at < 25 W, on today’s hardware.

Future work:

– Non-binary low precision and mixed precision

– Support external memory when parameters don’t fit in OCM

– BNNs on ImageNet

Page 25

Conclusions

© Copyright 2016 Xilinx
.

Page 26

BNN – Demo on Xilinx’s Python Productivity Kit PYNQ

Image preprocessing in

Python

Binary Neural Network

in FPGA fabric & on

ARM processor

“cat”
Come see the demo at the Xilinx booth!

Open source release coming soon

Trained datasets:

CIFAR10, traffic signs,

SVHN

© Copyright 2016 Xilinx
.

Page 27

Thank You!

© Copyright 2016 Xilinx
.

Evidence of redundancy in trained networks

– sparsification, low-rank approximations, fault tolerance…

Reduced precision (quantization)

– Restrict weights and/or activations to Q-bit values

– HW benefits: Low-bitwidth datapaths, regular compute

Sung et al: Quantization works well when…

– …the network is “big enough”

– …the network is aware of quantization during

(re)training

Page 28

Redundancy and Quantization

“(…) the performance gap between the floating-point and

the retrain-based ternary (+1, 0, -1) weight neural networks

(…) almost vanishes in fully complex networks (…)”

(Sung et al, Resiliency of Deep NNs Under Quantization)

© Copyright 2016 Xilinx
.

Page 29

Neurons versus Accuracy – Float and Binarized

~2x binary neurons give approximately the same accuracy

(for MNIST)

© Copyright 2016 Xilinx
.

Page 30

Potential of BNNs on FPGAs
fewer LUTs/op:

higher peak

performance
66 TOPS

1 TOPS

stay on-chip:

achieve more of

the peak

0.1 TOPS 40 TOPS

© Copyright 2016 Xilinx
.

Inputs:

– BNN topology (JSON) and trained parameters (NPZ)

– Desired frames per second (FPS)

Apply BNN-specific compute transformations

– Simplifications enabled by the value-constrained nature of BNNs

– Popcount, batchnorm-activation as threshold, maxpool as OR (details in paper)

Compute «folding factors» to meet FPS goal

Output:

– C++ (Vivado HLS) description of desired architecture

Page 31

FINN Synthesizer («FINNthesizer»)

© Copyright 2016 Xilinx
.

Page 32

Top Level

void DoCompute(ap_uint<64> * in, ap_uint<64> * out) {

#pragma HLS DATAFLOW

stream<ap_uint<64> > memInStrm("memInStrm");

stream<ap_uint<64> > InStrm("InStrm");

.

.

.

stream<ap_uint<64> > memOutStrm("memOutStrm");

Mem2Stream<64, inBytesPadded>(in, memInStrm);

StreamingMatrixVector<L0_SIMD, L0_PE, 16, L0_MW, L0_MH, L0_WMEM, L0_TMEM>

(InStrm, inter0, weightMem0, thresMem0);

StreamingMatrixVector<L1_SIMD, L1_PE, 16, L1_MW, L1_MH, L1_WMEM, L1_TMEM>

(inter0, inter1, weightMem1, thresMem1);

StreamingMatrixVector<L2_SIMD, L2_PE, 16, L2_MW, L2_MH, L2_WMEM, L2_TMEM>

(inter1, inter2, weightMem2, thresMem2);

StreamingMatrixVector<L3_SIMD, L3_PE, 16, L3_MW, L3_MH, L3_WMEM, L3_TMEM>

(inter2, outstream, weightMem3, thresMem3);

StreamingCast<ap_uint<16>, ap_uint<64> >(outstream, memOutStrm);

Stream2Mem<64, outBytesPadded>(memOutStrm, out);

}

Stream definitions

Layer instantiation

connected by streams

Move image in from PS memory

Move results to PS memory

© Copyright 2016 Xilinx
.

Page 33

MVTU

for (unsigned int nm = 0; nm < neuronFold; nm++) {

for (unsigned int sf = 0; sf < synapseFold; sf++) {

#pragma HLS PIPELINE II=1

ap_uint<SIMDWidth> inElem;

if (nm == 0) {

inElem = in.read();

inputBuf[sf] = inElem;

} else {

inElem = inputBuf[sf];

}

for (unsigned int pe = 0; pe < PECount; pe++) {

#pragma HLS UNROLL

ap_uint<SIMDWidth> weight = weightMem[pe][nm * synapseFold + sf];

ap_uint<SIMDWidth> masked = ~(weight ^ inElem);

accPopCount[pe] += NaivePopCount<SIMDWidth, PopCountWidth>(masked);

}

}

ap_uint<PECount> outElem = 0;

for (unsigned int pe = 0; pe < PECount; pe++) {

#pragma HLS UNROLL

outElem(pe, pe) = accPopCount[pe] > thresMem[pe][nm] ? 1 : 0;

accPopCount[pe] = 0; // clear the accumulator

}

Folding

Indexing weight and

threshold memory

binary MAC

Batchnorm & activation

as threshold

Reading

Inputs or consume

internal (when folded)

© Copyright 2016 Xilinx
.

Buffer incoming images in a single, #IFM-wide memory

Read out addresses corresponding to sliding window location

Preserve produce-consume order to minimize buffering

Page 34

Convolution: Sliding Window Unit (SWU)

© Copyright 2016 Xilinx
.

Page 35

Input Data

• MNIST handwritten

digits

• LFC: 98.4% accuracy

• Street View House

Numbers

• CNV: 94.9% accuracy

• CIFAR-10: cats, dogs,

airplanes..

• CNV: 80.1% accuracy

© Copyright 2016 Xilinx
.

Runtime utilization: Operators busy 70-90% of the time

LUT (instead of BRAM) storage if many PEs

– Fixed amount of work divided between more workers

– Complex mapping problem, multi-dimensional tradeoff between performance/area

Page 36

Results – Efficiency

