ALL PROGRAMMABLE

FINN: A Framework for Fast, Scalable Binarized Neural Network Inference

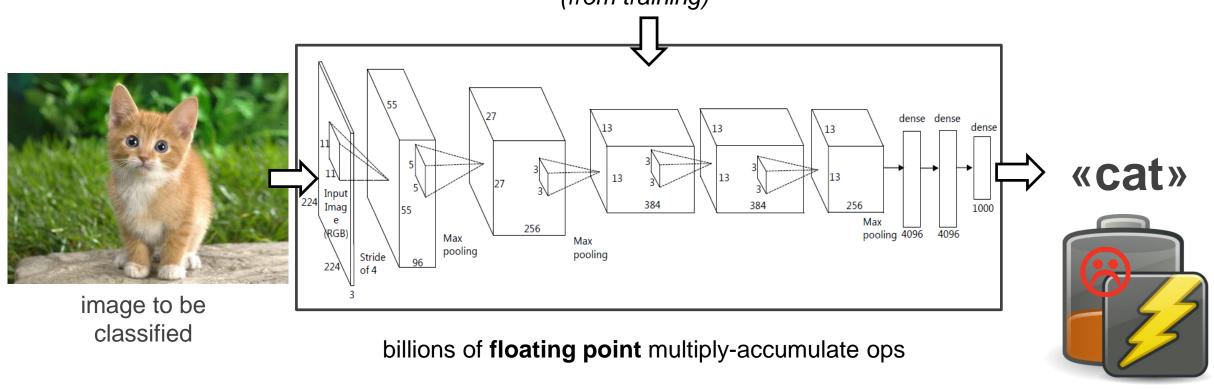
Yaman Umuroglu (XIR & NTNU), Nick Fraser (XIR & USydney), Giulio Gambardella (XIR), Michaela Blott (XIR), Philip Leong (USydney), Magnus Jahre (NTNU), Kees Vissers (XSJ)

Executive Summary

- > FPGAs can do trillions of binary operations per second & binarized neural nets can put this to good use.
- ▶ Inference accelerators that classify 10ks to Ms of images per second, at < 25 W, on today's hardware.

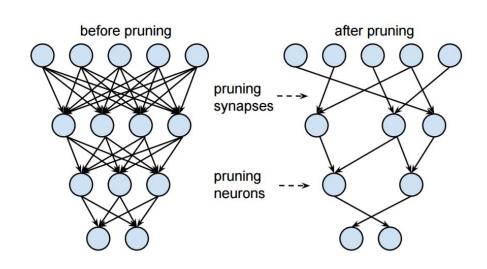
Inference with Convolutional Neural Networks (CNNs)

off-chip, tens of megabytes of floating point weight data (from training)



(up to several joules of energy)

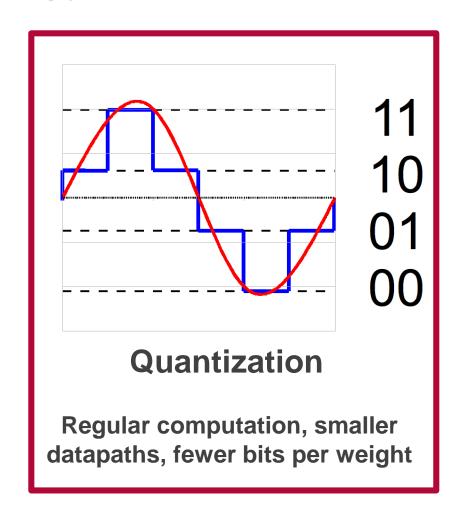
Some Emerging Alternatives for Energy-Efficient Inference



Synapse and neuron pruning

Sparse, irregular computation -- difficult to process efficiently

(Han et al., Learning both Weights and Connections for Efficient Neural Networks)



Binarized Neural Networks (BNNs)

▶ The extreme case of quantization

- Permit only two values: +1 and -1
- Binary weights, binary activations
- Trained from scratch, not truncated FP

➤ Courbariaux and Hubara et al. (NIPS 2016)

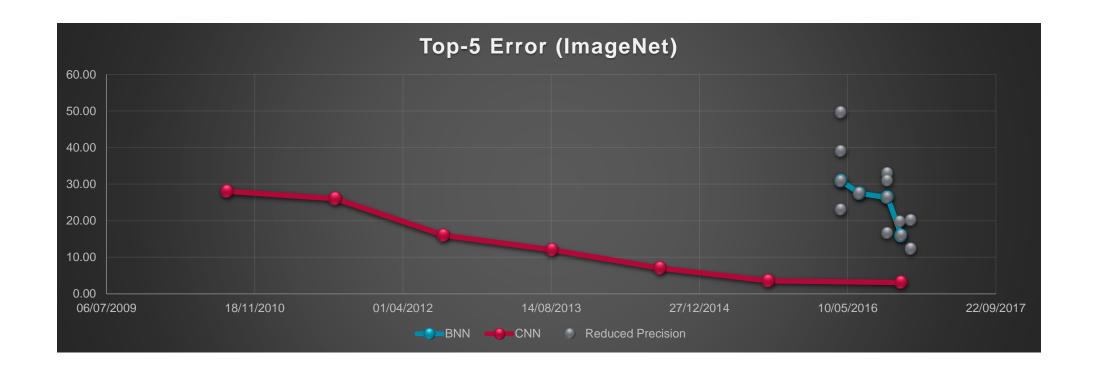
- Open source training flow
- Standard "deep learning" layers
 - Convolutions, max pooling, batch norm, fully connected...
- Competitive results on three smaller benchmarks

	MNIST	SVHN	CIFAR-10
Binary weights & activations	0.96%	2.53%	10.15%
FP weights & activations	0.94%	1.69%	7.62%
BNN accuracy loss	-0.2%	-0.84%	-2.53%

% classification error (lower is better)

Accuracy of BNNs on ImageNet

Published Results for FP CNNs, BNNs and Extreme Reduced Precision NNs



BNNs are new and accuracy results are improving rapidly

Potential of BNNs on FPGAs

➤ Much smaller datapaths

- Multiply becomes XNOR, addition becomes popcount
- No DSPs needed, everything in LUTs
- Lower cost per op = more ops every cycle, trillions of ops per second

> Much smaller weights

- Large networks can fit entirely into on-chip memory (OCM)
- More bandwidth, less energy compared to off-chip

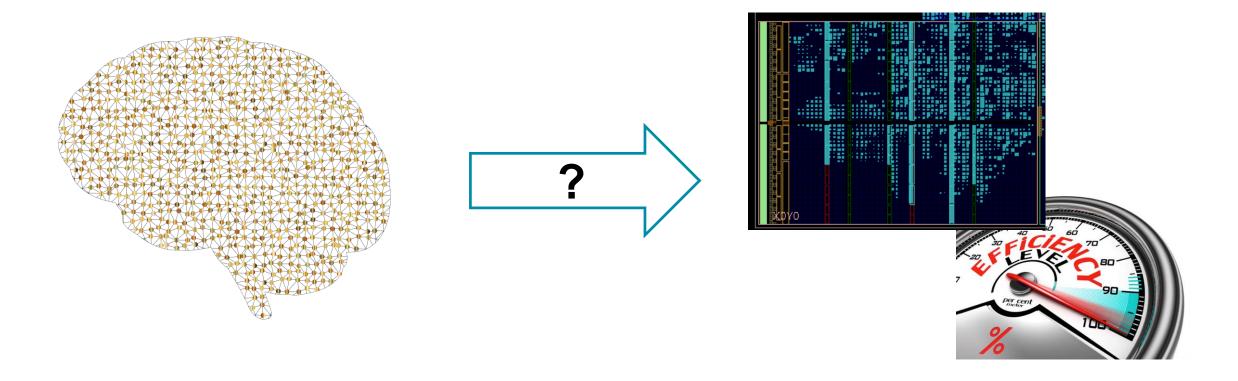
Xilinx UltraScale+ MPSoC ZU19EG (Vivado HLS, conservative estimates)

Precision	Peak GOPS	
1b	~66 000	
8b	~4 000	72
16b	~1 000	00x
32b	~300	

On-chip weights					
~70 M	<u> </u>				
~10 M	ری				
~5 M	30x				
~2 M					

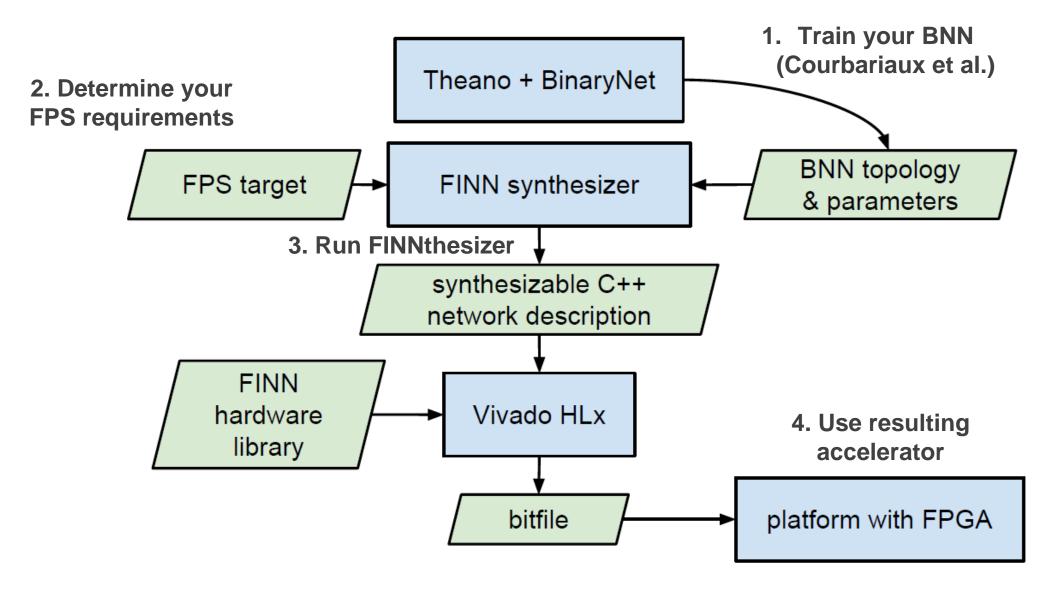
= potential for blazing fast inference with large BNNs on today's hardware

How do we exploit this potential?



>FINN, a Framework for Fast, Scalable Binarized Neural Network Inference

FINN at a glance



FINN Design Principles

> One size does not fit all

- Generate tailored hardware for network and use-case

> Stay on-chip

- Higher energy efficiency and bandwidth

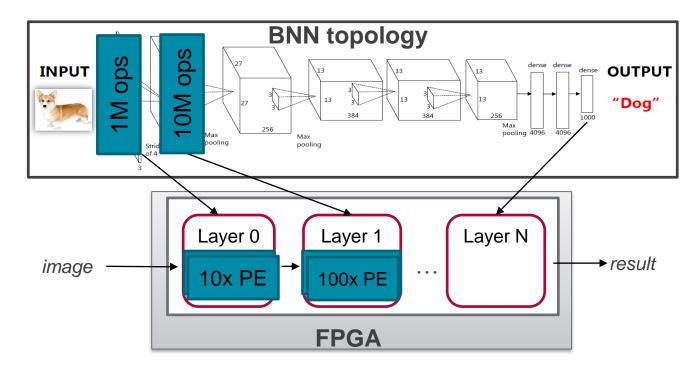
Support portability and rapid exploration

Vivado HLS (High-Level Synthesis)

Simplify with BNN-specific optimizations

- Exploit "compile time" optimizations to simplify the generated hardware
- E.g. batchnorm and activation => thresholding. See details in the paper

Heterogeneous Streaming Architecture

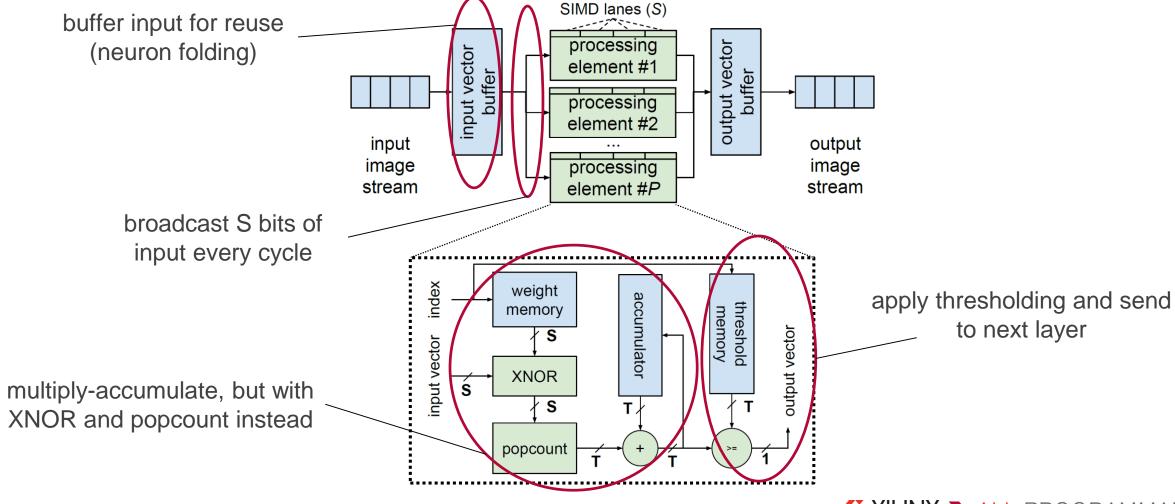


1x FPS 10x FPS

- > One hardware layer per BNN layer, parameters built into bitstream
 - Both inter- and intra-layer parallelism
- > Heterogeneous: Avoid "one-size-fits-all" penalties
 - Allocate compute resources according to FPS and network requirements
- > Streaming: Maximize throughput, minimize latency
 - Overlapping computation and communication, batch size = 1

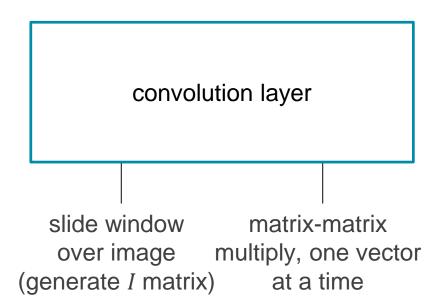
The Matrix-Vector Threshold Unit (MVTU)

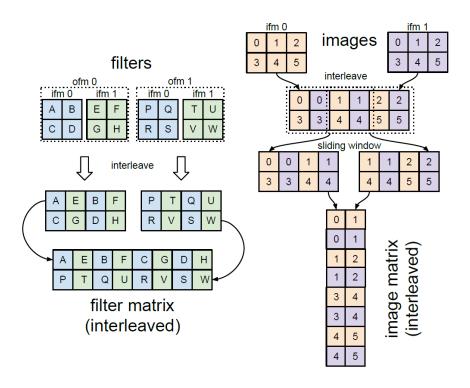
- > Core computational element of FINN, tiled matrix-vector multiply
- > Computes a (P) row x (S) column chunk of matrix every cycle, per-layer configurable tile size



Convolutional Layers

- ightharpoonup Lower convolutions to matrix-matrix multiplication, $W \cdot I$
 - W: filter matrix (generated offline)
 - I: image matrix (generated on-the-fly)
- > Two components:



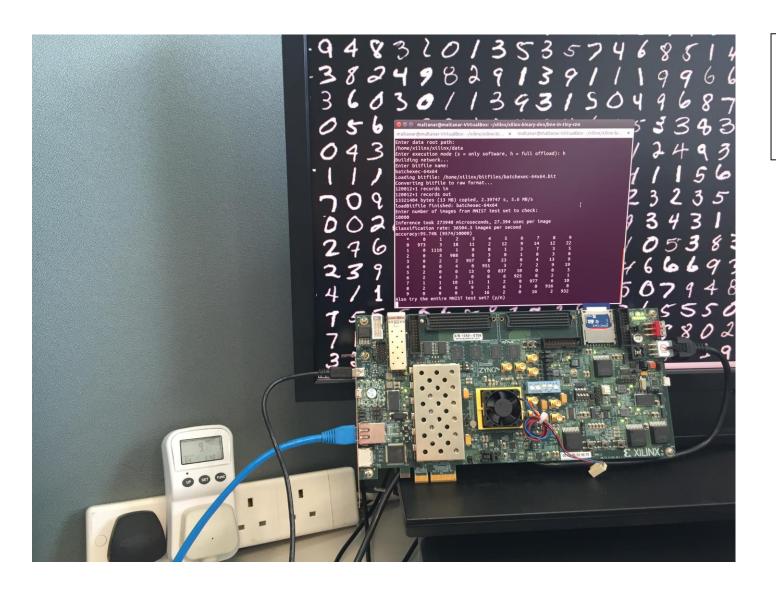


Folding

- > Time-multiplex (or *fold*) real neurons onto hardware neurons
 - Control folding via number of PEs and SIMD lanes in each layer
- > Folding computed by FINNthesizer to satisfy FPS requirements
 - FPS for one layer = clock frequency / folding factor
 - FPS of streaming system = minimum FPS of any layer
 - FINNthesizer will balance folding factors to match FPS across layers



Experimental Setup



ZC706 development platform:

Z7045 All-Programmable SoC 2 ARM Cortex-A9 cores 218k LUTs, 545 BRAMs

- **▶** 10000 test images in PS DDR
 - Streamed in-out via DMA
- > FINN-generated accelerator on PL
 - Running at 200 MHz
- > ARM core:
 - launches accelerator
 - measures time
 - verifies results
- > PMBus and wall power monitoring
 - Idle wall power ~7 W

Test Networks & Scenarios

▶ BNN Topology:

- SFC: small fully-connected, 0.6 MOP per image
- LFC: large fully-connected, 5.8 MOP per image
- CNV: convolutional, 112.5 MOP per image
- SFC & LFC on MNIST, binarized inputs and outputs
- CNV on CIFAR-10 and SVHN, 8-bit inputs, 16-bit outputs

➤ Scenario:

- fix: assume I/O bound, achieve 9000 FPS
 - max: achieve as high FPS as possible

Results – Maximum Throughput

Prototype	FPS	GOPS	BRAM	LUT	Latency [us]	Power [W]
SFC-max	12.3 M	8 265	4.5	91 131 (42%)	0.31	21.2
LFC-max	1.5 M	9 085	396	82 988 (38%)	2.44	22.6
CNV-max	21.9 k	2 465	186	46 253 (21%)	283	11.7

Unprecedented classification rates

Ultra-low latency For robotics, AR, UAVs

Results – 9k FPS target

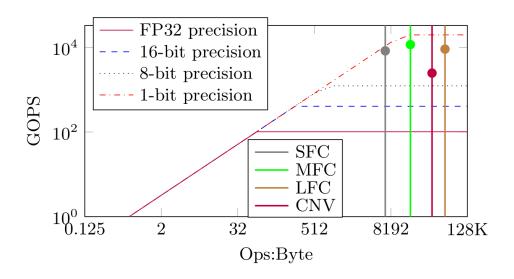
12 kFPS with ~1-3 W over idle power

Prototype	FPS	GOPS	BRAM	LUT	Latency [us]	Power [W]
SFC-fix	12.2 k	8	16	5 155 (3%)	240	8.1
LFC-fix	12.2 k	71	114.5	_/ 5 636 (3%)	282	7.9
CNV-fix	11.6 k	1 306	152.5	29 274 (13%)	550	10

FPS goal exceeded (integer folding factors)

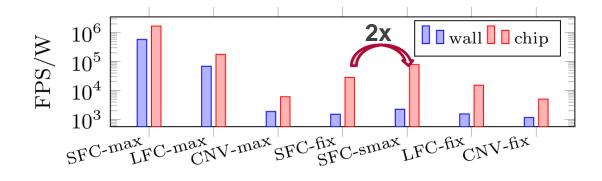
Scalability to small footprints

Results – Other Highlights



➤ Up to 58% of roofline performance estimate

- SFC-max: DRAM bandwidth-bound
- LFC-max: resource bound (BRAM)
- CNV-max: architecture bound (SWU)



Massive but slow-clock parallelism: good energy efficiency

- Use 250 kHz clock for 12M FPS prototype:
 15 kFPS on MNIST with 0.2 W chip power
- Observed that slowed-down SFC-max 2x
 more energy efficient than SFC-fix

Comparison to Prior Work

- **▶** How to compare neural network accelerators across precisions and devices?
 - Accuracy, images per second, energy efficiency

	Accuracy	FPS	Power (chip)	Power (wall)	kFPS / Watt (chip)	kFPS / Watt (wall)	Precision
MNIST, SFC-max	95.8%	12.3 M	7.3 W	21.2 W	1693	583	1
MNIST, LFC-max	98.4%	1.5 M	8.8 W	22.6 W	177	269	1
CIFAR-10, CNV-max	80.1%	21.9 k	3.6 W	11.7 W	6	2	1
SVHN, CNV-max	94.9%	21.9 k	3.6 W	11.7 W	6	2	1
MNIST, Alemdar et al.	97.8%	255.1 k	0.3 W	-	806	-	2
CIFAR-10, TrueNorth	83.4%	1.2 k	0.2 W	-	6	-	1
SVHN, TrueNorth	96.7%	2.5 k	0.3 W	-	10	-	1

Max accuracy loss: ~3%

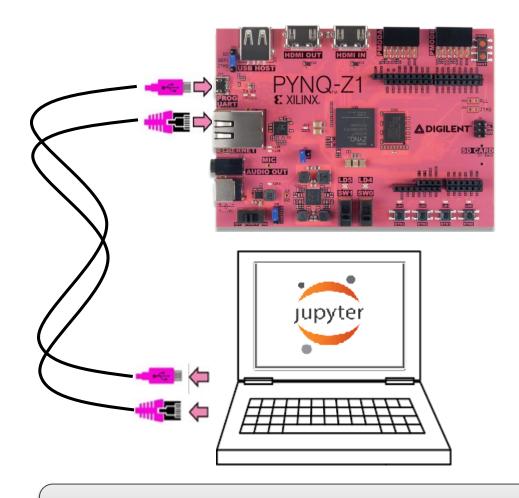
10 – 100x better performance

CIFAR-10/SVHN energy efficiency comparable to TrueNorth ASIC

Conclusions

- > FPGAs can do trillions of binary operations per second.
- ➤ FINN can build BNN inference accelerators that classify 10Ks to Ms of images per second, at < 25 W, on today's hardware.
- > Future work:
 - Non-binary low precision and mixed precision
 - Support external memory when parameters don't fit in OCM
 - BNNs on ImageNet

BNN – Demo on Xilinx's Python Productivity Kit PYNQ

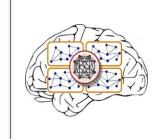


Come see the demo at the Xilinx booth!

Open source release coming soon

Trained datasets: CIFAR10, traffic signs, SVHN

Image preprocessing in Python



Binary Neural Network in FPGA fabric & on ARM processor

"cat"

Redundancy and Quantization

> Evidence of redundancy in trained networks

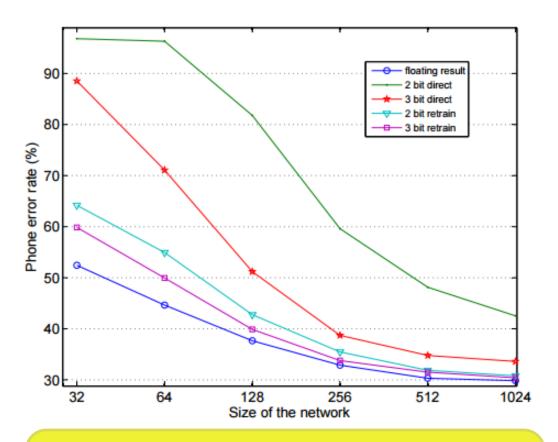
sparsification, low-rank approximations, fault tolerance...

> Reduced precision (quantization)

- Restrict weights and/or activations to Q-bit values
- HW benefits: Low-bitwidth datapaths, regular compute

➤ Sung et al: Quantization works well when...

- ...the network is "big enough"
- ...the network is aware of quantization during (re)training



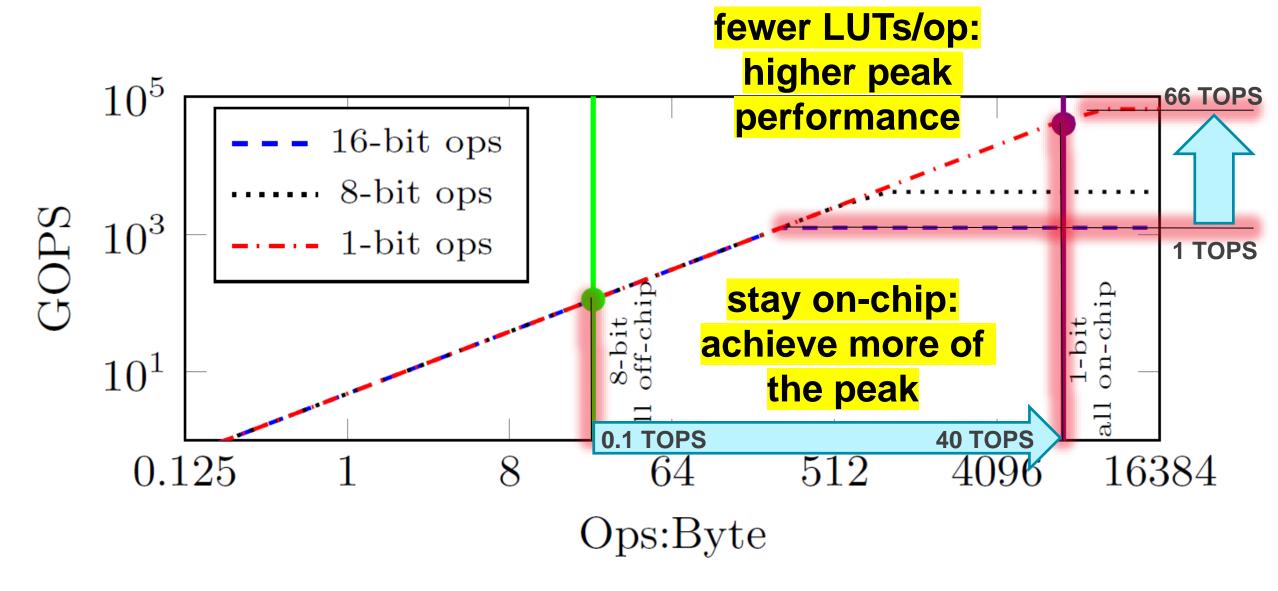
"(...) the performance gap between the floating-point and the retrain-based ternary (+1, 0, -1) weight neural networks (...) almost vanishes in fully complex networks (...)" (Sung et al, Resiliency of Deep NNs Under Quantization)

Neurons versus Accuracy - Float and Binarized

Neurons/layer	Binary Err. (%)	Float Err. (%)	# Params	Ops/frame
128 256 512 1024 2048 4096	$\begin{array}{c c} 6.58 \\ 4.17 \\ 2.31 \\ 1.60 \\ 1.32 \\ 1.17 \end{array}$	2.70 1.78 1.25 1.13 0.97 0.91	$134,794 \\ 335,114 \\ 932,362 \\ 2,913,290 \\ 10,020,874 \\ 36,818,954$	$268,800 \\ 668,672 \\ 1,861,632 \\ 5,820,416 \\ 20,029,440 \\ 73,613,312$

~2x binary neurons give approximately the same accuracy (for MNIST)

Potential of BNNs on FPGAs



FINN Synthesizer («FINNthesizer»)

> Inputs:

- BNN topology (JSON) and trained parameters (NPZ)
- Desired frames per second (FPS)
- **➤** Apply BNN-specific compute transformations
 - Simplifications enabled by the value-constrained nature of BNNs
 - Popcount, batchnorm-activation as threshold, maxpool as OR (details in paper)
- ➤ Compute «folding factors» to meet FPS goal
- **>** Output:
 - C++ (Vivado HLS) description of desired architecture

Top Level

```
void DoCompute(ap uint<64> * in, ap uint<64> * out) {
#pragma HLS DATAFLOW
  stream<ap uint<64> > memInStrm("memInStrm");
  stream<ap uint<64> > InStrm("InStrm");
                                                                                   Stream definitions
  stream<ap uint<64> > memOutStrm("memOutStrm");
                                                                                   Move image in from PS memory
  Mem2Stream<64, inBytesPadded>(in, memInStrm);
  StreamingMatrixVector<LO SIMD, LO PE, 16, LO MW, LO MH, LO WMEM, LO TMEM>
          (InStrm, inter0, weightMem0, thresMem0);
  StreamingMatrixVector<L1 SIMD, L1 PE, 16, L1 MW, L1 MH, L1 WMEM, L1 TMEM>
          (inter0, inter1, weightMem1, thresMem1);
                                                                                   Layer instantiation
  StreamingMatrixVector<L2 SIMD, L2 PE, 16, L2 MW, L2 MH, L2 WMEM, L2 TMEM>
                                                                                   connected by streams
          (inter1, inter2, weightMem2, thresMem2);
  StreamingMatrixVector<L3 SIMD, L3 PE, 16, L3 MW, L3 MH, L3 WMEM, L3 TMEM>
          (inter2, outstream, weightMem3, thresMem3);
    StreamingCast<ap uint<16>, ap uint<64> >(outstream, memOutStrm);

→ Move results to PS memory

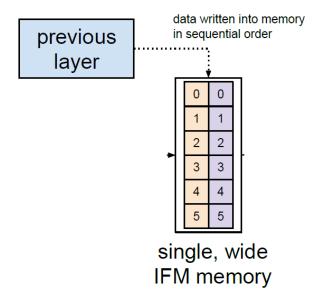
   Stream2Mem<64, outBytesPadded>(memOutStrm, out);
```

MVTU

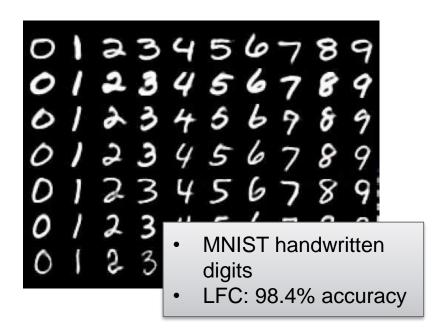
```
for (unsigned int nm = 0; nm < neuronFold; nm++) {</pre>
                                                                                        Folding
   for (unsigned int sf = 0; sf < synapseFold; sf++) {</pre>
#pragma HLS PIPELINE II=1
          ap uint<SIMDWidth> inElem;
                                                                                         Reading
         if (nm == 0) {
                                                                                         Inputs or consume
            inElem = in.read();
                                                                                         internal (when folded)
            inputBuf[sf] = inElem;
          } else {
            inElem = inputBuf[sf];
                                                                                         Indexing weight and
         for (unsigned int pe = 0; pe < PECount; pe++) {</pre>
#pragma HLS UNROLL
                                                                                         threshold memory
             ap uint<SIMDWidth> weight = weightMem[pe][nm * synapseFold + sf];
                                                                                         binary MAC
             ap uint<SIMDWidth> masked = ~(weight ^ inElem);
             accPopCount[pe] += NaivePopCount<SIMDWidth, PopCountWidth>(masked);
   ap uint<PECount> outElem = 0;
   for (unsigned int pe = 0; pe < PECount; pe++) {</pre>
                                                                                         Batchnorm & activation
#pragma HLS UNROLL
                                                                                         as threshold
          outElem(pe, pe) = accPopCount[pe] > thresMem[pe][nm] ? 1 : 0;
         accPopCount[pe] = 0;  // clear the accumulator
```

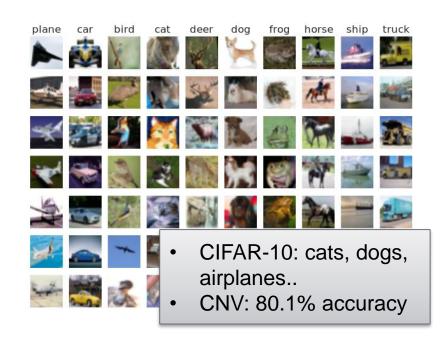
Convolution: Sliding Window Unit (SWU)

- > Buffer incoming images in a single, #IFM-wide memory
- > Read out addresses corresponding to sliding window location
- > Preserve produce-consume order to minimize buffering



Input Data





Results – Efficiency

> Runtime utilization: Operators busy 70-90% of the time

- > LUT (instead of BRAM) storage if many PEs
 - Fixed amount of work divided between more workers
 - Complex mapping problem, multi-dimensional tradeoff between performance/area

