
FINN: A Framework for Fast, Scalable 
Binarized Neural Network Inference
Yaman Umuroglu (XIR & NTNU), Nick Fraser (XIR & USydney), Giulio 
Gambardella (XIR), Michaela Blott (XIR), Philip Leong (USydney), 
Magnus Jahre (NTNU), Kees Vissers (XSJ)



© Copyright 2016 Xilinx
.

Page 2

Executive Summary

FPGAs can do trillions of binary operations per second & binarized neural nets can put this to good use.

Inference accelerators that classify 10ks to Ms of images per second, at < 25 W, on today’s hardware.
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Inference with Convolutional Neural Networks (CNNs)

«cat»



billions of floating point multiply-accumulate ops

(up to several joules of energy)

off-chip, tens of megabytes of floating point weight data

(from training)

image to be 

classified
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Some Emerging Alternatives for Energy-Efficient Inference

Synapse and neuron pruning

(Han et al., Learning both Weights and Connections for 

Efficient Neural Networks)

Quantization

Sparse, irregular computation --

difficult to process efficiently

Regular computation, smaller 

datapaths, fewer bits per weight
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The extreme case of quantization

– Permit only two values: +1 and -1

– Binary weights, binary activations

– Trained from scratch, not truncated FP

Courbariaux and Hubara et al. (NIPS 2016)

– Open source training flow

– Standard “deep learning” layers

• Convolutions, max pooling, batch norm, fully connected…

– Competitive results on three smaller benchmarks
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Binarized Neural Networks (BNNs)

MNIST SVHN CIFAR-10

Binary weights & 

activations

0.96% 2.53% 10.15%

FP weights &

activations

0.94% 1.69% 7.62%

BNN accuracy loss -0.2% -0.84% -2.53%

% classification error

(lower is better)
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Accuracy of BNNs on ImageNet
Published Results for FP CNNs, BNNs and Extreme Reduced Precision NNs
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• BNNs are new and accuracy results are improving rapidly
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On-chip weights

~70 M

~10 M

~5 M

~2 M

Much smaller datapaths

– Multiply becomes XNOR, addition becomes popcount

– No DSPs needed, everything in LUTs

– Lower cost per op = more ops every cycle, trillions of ops per second

Much smaller weights

– Large networks can fit entirely into on-chip memory (OCM)

– More bandwidth, less energy compared to off-chip
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Potential of BNNs on FPGAs

Precision

1b

8b

16b

32b

= potential for blazing fast

inference with large BNNs

on today’s hardware

Xilinx UltraScale+ MPSoC ZU19EG 

(Vivado HLS, conservative estimates)
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FINN, a Framework for Fast, Scalable 

Binarized Neural Network Inference 
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How do we exploit this potential?

?
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FINN at a glance

1. Train your BNN  

(Courbariaux et al.)
2. Determine your 

FPS requirements

3. Run FINNthesizer

4. Use resulting 

accelerator
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One size does not fit all

– Generate tailored hardware for network and use-case

Stay on-chip

– Higher energy efficiency and bandwidth

Support portability and rapid exploration

– Vivado HLS (High-Level Synthesis)

Simplify with BNN-specific optimizations

– Exploit “compile time” optimizations to simplify the generated hardware

– E.g. batchnorm and activation => thresholding. See details in the paper
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FINN Design Principles
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One hardware layer per BNN layer, parameters built into bitstream

– Both inter- and intra-layer parallelism

Heterogeneous: Avoid “one-size-fits-all” penalties

– Allocate compute resources according to FPS and network requirements

Streaming: Maximize throughput, minimize latency

– Overlapping computation and communication, batch size = 1
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Heterogeneous Streaming Architecture

Layer 0 Layer 1 Layer N

…image result

FPGA

BNN topology
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1x PE 10x PE 1x FPS

10x FPS
10x PE 100x PE
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Core computational element of FINN, tiled matrix-vector multiply

Computes a (P) row x (S) column chunk of matrix every cycle, per-layer configurable tile size
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The Matrix-Vector Threshold Unit (MVTU)

broadcast S bits of 

input every cycle

buffer input for reuse

(neuron folding)

multiply-accumulate, but with 

XNOR and popcount instead

apply thresholding and send 

to next layer
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Lower convolutions to matrix-matrix multiplication, 𝑾 ⋅ 𝑰

– 𝑊 : filter matrix (generated offline)

– 𝐼: image matrix (generated on-the-fly)

Two components:
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Convolutional Layers

sliding 

window unit 

(SWU)

MVTU

slide window

over image

(generate 𝐼 matrix)

matrix-matrix

multiply, one vector

at a time

convolution layer
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Time-multiplex (or fold) real neurons onto hardware neurons

– Control folding via number of PEs and SIMD lanes in each layer

Folding computed by FINNthesizer to satisfy FPS requirements

– FPS for one layer = clock frequency / folding factor

– FPS of streaming system = minimum FPS of any layer

– FINNthesizer will balance folding factors to match FPS across layers
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Folding
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Experimental Setup

ZC706 development platform:

Z7045 All-Programmable SoC

2 ARM Cortex-A9 cores

218k LUTs, 545 BRAMs

10000 test images in PS DDR

– Streamed in-out via DMA

FINN-generated accelerator on PL

– Running at 200 MHz

ARM core:

– launches accelerator

– measures time

– verifies results

PMBus and wall power monitoring

– Idle wall power ~7 W
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Test Networks & Scenarios

Scenario:

– fix: assume I/O bound, achieve 9000 FPS

– max: achieve as high FPS as possible

«CNV

BNN Topology:

– SFC: small fully-connected, 0.6 MOP per image

– LFC: large fully-connected, 5.8 MOP per image

– CNV: convolutional, 112.5 MOP per image

– SFC & LFC on MNIST, binarized inputs and outputs

– CNV on CIFAR-10 and SVHN, 8-bit inputs, 16-bit 

outputs

-fix»



© Copyright 2016 Xilinx
.

Prototype FPS GOPS BRAM LUT Latency [us] Power [W]

SFC-max 12.3 M 8 265 4.5 91 131 (42%) 0.31 21.2

LFC-max 1.5 M 9 085 396 82 988 (38%) 2.44 22.6

CNV-max 21.9 k 2 465 186 46 253 (21%) 283 11.7
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Results – Maximum Throughput

Unprecedented 

classification 

rates

Ultra-low latency

For robotics, AR, UAVs
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Prototype FPS GOPS BRAM LUT Latency [us] Power [W]

SFC-fix 12.2 k 8 16 5 155 (3%) 240 8.1

LFC-fix 12.2 k 71 114.5 5 636 (3%) 282 7.9

CNV-fix 11.6 k 1 306 152.5 29 274 (13%) 550 10
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Results – 9k FPS target

Scalability to 

small footprints

12 kFPS with 

~1-3 W over idle 

power

FPS goal 

exceeded 

(integer folding 

factors)
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Massive but slow-clock parallelism: 

good energy efficiency

– Use 250 kHz clock for 12M FPS prototype: 

15 kFPS on MNIST with 0.2 W chip power

– Observed that slowed-down SFC-max 2x 

more energy efficient than SFC-fix
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Results – Other Highlights

Up to 58% of roofline performance 

estimate

– SFC-max: DRAM bandwidth-bound

– LFC-max: resource bound (BRAM)

– CNV-max: architecture bound (SWU)

2x
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MNIST, Alemdar et al. 97.8% 255.1 k 0.3 W - 806 - 2

CIFAR-10, TrueNorth 83.4% 1.2 k 0.2 W - 6 - 1

SVHN, TrueNorth 96.7% 2.5 k 0.3 W - 10 - 1

How to compare neural network accelerators across precisions and devices?

– Accuracy, images per second, energy efficiency
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Comparison to Prior Work

10 – 100x better 

performance

CIFAR-10/SVHN energy efficiency 

comparable to TrueNorth ASIC

Accuracy FPS Power

(chip)

Power

(wall)

kFPS / Watt

(chip)

kFPS / Watt

(wall)

Precision

MNIST, SFC-max 95.8% 12.3 M 7.3 W 21.2 W 1693 583 1

MNIST, LFC-max 98.4% 1.5 M 8.8 W 22.6 W 177 269 1

CIFAR-10, CNV-max 80.1% 21.9 k 3.6 W 11.7 W 6 2 1

SVHN, CNV-max 94.9% 21.9 k 3.6 W 11.7 W 6 2 1

Max accuracy 

loss: ~3%

P
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o
r 

W
o
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F
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FPGAs can do trillions of binary operations per second.

FINN can build BNN inference accelerators that classify 10Ks to Ms of images per second, 

at < 25 W, on today’s hardware.

Future work:

– Non-binary low precision and mixed precision

– Support external memory when parameters don’t fit in OCM

– BNNs on ImageNet
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Conclusions
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BNN – Demo on Xilinx’s Python Productivity Kit PYNQ

Image preprocessing in 

Python

Binary Neural Network 

in FPGA fabric & on 

ARM processor

“cat”
Come see the demo at the Xilinx booth!

Open source release coming soon

Trained datasets: 

CIFAR10, traffic signs, 

SVHN
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Thank You!
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Evidence of redundancy in trained networks

– sparsification, low-rank approximations, fault tolerance…

Reduced precision (quantization)

– Restrict weights and/or activations to Q-bit values

– HW benefits: Low-bitwidth datapaths, regular compute

Sung et al: Quantization works well when…

– …the network is “big enough”

– …the network is aware of quantization during 

(re)training
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Redundancy and Quantization

“(…) the performance gap between the floating-point and 

the retrain-based ternary (+1, 0, -1) weight neural networks 

(…) almost vanishes in fully complex networks (…)” 

(Sung et al, Resiliency of Deep NNs Under Quantization)



© Copyright 2016 Xilinx
.

Page 29

# Neurons versus Accuracy – Float and Binarized

~2x binary neurons give approximately the same accuracy

(for MNIST)
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Potential of BNNs on FPGAs
fewer LUTs/op:

higher peak 

performance
66 TOPS

1 TOPS

stay on-chip:

achieve more of 

the peak

0.1 TOPS 40 TOPS
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Inputs: 

– BNN topology (JSON) and trained parameters (NPZ)

– Desired frames per second (FPS)

Apply BNN-specific compute transformations

– Simplifications enabled by the value-constrained nature of BNNs

– Popcount, batchnorm-activation as threshold, maxpool as OR (details in paper)

Compute «folding factors» to meet FPS goal

Output:

– C++ (Vivado HLS) description of desired architecture
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FINN Synthesizer («FINNthesizer»)
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Top Level

void DoCompute(ap_uint<64> * in, ap_uint<64> * out) {

#pragma HLS DATAFLOW

stream<ap_uint<64> > memInStrm("memInStrm");

stream<ap_uint<64> > InStrm("InStrm");

.

.

.

stream<ap_uint<64> > memOutStrm("memOutStrm");

Mem2Stream<64, inBytesPadded>(in, memInStrm);

StreamingMatrixVector<L0_SIMD, L0_PE, 16, L0_MW, L0_MH, L0_WMEM, L0_TMEM>

(InStrm, inter0, weightMem0, thresMem0);

StreamingMatrixVector<L1_SIMD, L1_PE, 16, L1_MW, L1_MH, L1_WMEM, L1_TMEM>

(inter0, inter1, weightMem1, thresMem1);

StreamingMatrixVector<L2_SIMD, L2_PE, 16, L2_MW, L2_MH, L2_WMEM, L2_TMEM>

(inter1, inter2, weightMem2, thresMem2);

StreamingMatrixVector<L3_SIMD, L3_PE, 16, L3_MW, L3_MH, L3_WMEM, L3_TMEM>

(inter2, outstream, weightMem3, thresMem3);

StreamingCast<ap_uint<16>, ap_uint<64> >(outstream, memOutStrm);

Stream2Mem<64, outBytesPadded>(memOutStrm, out);

}

Stream definitions

Layer instantiation 

connected by streams

Move image in from PS memory

Move results to PS memory
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MVTU

for (unsigned int nm = 0; nm < neuronFold; nm++) {

for (unsigned int sf = 0; sf < synapseFold; sf++) {

#pragma HLS PIPELINE II=1

ap_uint<SIMDWidth> inElem;

if (nm == 0) {

inElem = in.read();

inputBuf[sf] = inElem;

} else {

inElem = inputBuf[sf];

}

for (unsigned int pe = 0; pe < PECount; pe++) {

#pragma HLS UNROLL

ap_uint<SIMDWidth> weight = weightMem[pe][nm * synapseFold + sf];

ap_uint<SIMDWidth> masked = ~(weight ^ inElem);

accPopCount[pe] += NaivePopCount<SIMDWidth, PopCountWidth>(masked);

}

}

ap_uint<PECount> outElem = 0;

for (unsigned int pe = 0; pe < PECount; pe++) {

#pragma HLS UNROLL

outElem(pe, pe) = accPopCount[pe] > thresMem[pe][nm] ? 1 : 0;

accPopCount[pe] = 0; // clear the accumulator

}

Folding

Indexing weight and 

threshold memory

binary MAC 

Batchnorm & activation 

as threshold  

Reading 

Inputs or consume 

internal (when folded)
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Buffer incoming images in a single, #IFM-wide memory

Read out addresses corresponding to sliding window location

Preserve produce-consume order to minimize buffering
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Convolution: Sliding Window Unit (SWU)
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Input Data

• MNIST handwritten 

digits

• LFC: 98.4% accuracy

• Street View House 

Numbers

• CNV: 94.9% accuracy

• CIFAR-10: cats, dogs, 

airplanes..

• CNV: 80.1% accuracy
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Runtime utilization: Operators busy 70-90% of the time

LUT (instead of BRAM) storage if many PEs

– Fixed amount of work divided between more workers

– Complex mapping problem, multi-dimensional tradeoff between performance/area
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Results – Efficiency


