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Deep Learning is Changing Our Lives
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IMAGE RECOGNITION SPEECH RECOGNITION

Important Property of Neural Networks

Results get better with 

more data +
bigger models +

more computation

(Better algorithms, new insights and 
improved techniques always help, too!)

2012
AlexNet

2015
ResNet

152 layers
22.6 GFLOP
~3.5% error

8 layers
1.4 GFLOP
~16% Error

16X
Model

2014
Deep Speech 1

2015
Deep Speech 2

80 GFLOP
7,000 hrs of Data

~8% Error

10X
Training Ops

465 GFLOP
12,000 hrs of Data

~5% Error

Dally, NIPS’2016 workshop on Efficient Methods for Deep Neural Networks

Models are Getting Larger



Computation Intensive, Memory Intensive, 
Difficult to Deploy

AlphaGo: 1920 CPUs and 280 GPUs,  
                  $3000 electric bill per game 

The Problem of Deep Learning



Given the power budget,  
Moore’s law is no longer  

providing more computation  



Improve the Efficiency of Deep Learning 
by Algorithm-Hardware Co-Design 



Application as Black Box

Hardware

Application



Open the Box for HW Design

Breaks the boundary between application and architecture 
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App developers suffers from the model size

The Problem: Large DNN Model



Figure 1: Energy table for 45nm CMOS process. Memory access is 2-3 orders of magnitude more 
energy expensive than arithmetic operations. 

Operation Energy [pJ] Relative Cost

32 bit int ADD 0.1 1
32 bit float ADD 0.9 9
32 bit Register File 1 10
32 bit int MULT 3.1 31
32 bit float MULT 3.7 37
32 bit SRAM Cache 5 50
32 bit DRAM Memory 640 6400

1 10 100 1000 10000

Relative Energy Cost 

Figure 1: Energy table for 45nm CMOS process [7]. Memory access is 3 orders of magnitude more
energy expensive than simple arithmetic.

To achieve this goal, we present a method to prune network connections in a manner that preserves the
original accuracy. After an initial training phase, we remove all connections whose weight is lower
than a threshold. This pruning converts a dense, fully-connected layer to a sparse layer. This first
phase learns the topology of the networks — learning which connections are important and removing
the unimportant connections. We then retrain the sparse network so the remaining connections can
compensate for the connections that have been removed. The phases of pruning and retraining may
be repeated iteratively to further reduce network complexity. In effect, this training process learns
the network connectivity in addition to the weights - much as in the mammalian brain [8][9], where
synapses are created in the first few months of a child’s development, followed by gradual pruning of
little-used connections, falling to typical adult values.

2 Related Work

Neural networks are typically over-parameterized, and there is significant redundancy for deep learn-
ing models [10]. This results in a waste of both computation and memory. There have been various
proposals to remove the redundancy: Vanhoucke et al. [11] explored a fixed-point implementation
with 8-bit integer (vs 32-bit floating point) activations. Denton et al. [12] exploited the linear
structure of the neural network by finding an appropriate low-rank approximation of the parameters
and keeping the accuracy within 1% of the original model. With similar accuracy loss, Gong et al.
[13] compressed deep convnets using vector quantization. These approximation and quantization
techniques are orthogonal to network pruning, and they can be used together to obtain further gains
[14].

There have been other attempts to reduce the number of parameters of neural networks by replacing
the fully connected layer with global average pooling. The Network in Network architecture [15]
and GoogLenet [16] achieves state-of-the-art results on several benchmarks by adopting this idea.
However, transfer learning, i.e. reusing features learned on the ImageNet dataset and applying them
to new tasks by only fine-tuning the fully connected layers, is more difficult with this approach. This
problem is noted by Szegedy et al. [16] and motivates them to add a linear layer on the top of their
networks to enable transfer learning.

Network pruning has been used both to reduce network complexity and to reduce over-fitting. An
early approach to pruning was biased weight decay [17]. Optimal Brain Damage [18] and Optimal
Brain Surgeon [19] prune networks to reduce the number of connections based on the Hessian of the
loss function and suggest that such pruning is more accurate than magnitude-based pruning such as
weight decay. However, second order derivative needs additional computation.

HashedNets [20] is a recent technique to reduce model sizes by using a hash function to randomly
group connection weights into hash buckets, so that all connections within the same hash bucket
share a single parameter value. This technique may benefit from pruning. As pointed out in Shi et al.
[21] and Weinberger et al. [22], sparsity will minimize hash collision making feature hashing even
more effective. HashedNets may be used together with pruning to give even better parameter savings.

2

1 = 100

Hardware engineer suffers from the model size 
larger model => more memory reference => more energy

The Problem: Large DNN Model
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Figure 1: Energy table for 45nm CMOS process [7]. Memory access is 3 orders of magnitude more
energy expensive than simple arithmetic.

To achieve this goal, we present a method to prune network connections in a manner that preserves the
original accuracy. After an initial training phase, we remove all connections whose weight is lower
than a threshold. This pruning converts a dense, fully-connected layer to a sparse layer. This first
phase learns the topology of the networks — learning which connections are important and removing
the unimportant connections. We then retrain the sparse network so the remaining connections can
compensate for the connections that have been removed. The phases of pruning and retraining may
be repeated iteratively to further reduce network complexity. In effect, this training process learns
the network connectivity in addition to the weights - much as in the mammalian brain [8][9], where
synapses are created in the first few months of a child’s development, followed by gradual pruning of
little-used connections, falling to typical adult values.

2 Related Work

Neural networks are typically over-parameterized, and there is significant redundancy for deep learn-
ing models [10]. This results in a waste of both computation and memory. There have been various
proposals to remove the redundancy: Vanhoucke et al. [11] explored a fixed-point implementation
with 8-bit integer (vs 32-bit floating point) activations. Denton et al. [12] exploited the linear
structure of the neural network by finding an appropriate low-rank approximation of the parameters
and keeping the accuracy within 1% of the original model. With similar accuracy loss, Gong et al.
[13] compressed deep convnets using vector quantization. These approximation and quantization
techniques are orthogonal to network pruning, and they can be used together to obtain further gains
[14].

There have been other attempts to reduce the number of parameters of neural networks by replacing
the fully connected layer with global average pooling. The Network in Network architecture [15]
and GoogLenet [16] achieves state-of-the-art results on several benchmarks by adopting this idea.
However, transfer learning, i.e. reusing features learned on the ImageNet dataset and applying them
to new tasks by only fine-tuning the fully connected layers, is more difficult with this approach. This
problem is noted by Szegedy et al. [16] and motivates them to add a linear layer on the top of their
networks to enable transfer learning.

Network pruning has been used both to reduce network complexity and to reduce over-fitting. An
early approach to pruning was biased weight decay [17]. Optimal Brain Damage [18] and Optimal
Brain Surgeon [19] prune networks to reduce the number of connections based on the Hessian of the
loss function and suggest that such pruning is more accurate than magnitude-based pruning such as
weight decay. However, second order derivative needs additional computation.

HashedNets [20] is a recent technique to reduce model sizes by using a hash function to randomly
group connection weights into hash buckets, so that all connections within the same hash bucket
share a single parameter value. This technique may benefit from pruning. As pointed out in Shi et al.
[21] and Weinberger et al. [22], sparsity will minimize hash collision making feature hashing even
more effective. HashedNets may be used together with pruning to give even better parameter savings.
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• 1. Pruning

• 2. Weight Sharing 

• 3. Quantization 

• 4. Low Rank Approximation

• 5. Binary / Ternary Net

• 6. Winograd Transformation

Part 1: Algorithms for Efficient Inference
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Pruning Neural Networks

Han et al. Learning both Weights and Connections for Efficient Neural Networks, NIPS’15



# Synapses in Human Brain

Christopher A Walsh. Peter Huttenlocher (1931-2013). Nature, 502(7470):172–172, 2013.  

50 Trillion 
Synapses  

500 Trillion 
Synapses  

1000 Trillion 
Synapses  

Newborn 1 year old Adolescent 



AlexNet

Han et al. Learning both Weights and Connections for Efficient Neural Networks, NIPS 2015

CONV: 3x FC: 10x



Retrain to Recover Accuracy
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Parametes Pruned Away

L2 regularization w/o retrain L1 regularization w/o retrain 
L1 regularization w/ retrain L2 regularization w/ retrain 
L2 regularization w/ iterative prune and retrain 

Han et al. Learning both Weights and Connections for Efficient Neural Networks, NIPS 2015



Pruning RNN and LSTM

Lecture 10 - 8 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10 - 8 Feb 201651

Explain Images with Multimodal Recurrent Neural Networks, Mao et al.
Deep Visual-Semantic Alignments for Generating Image Descriptions, Karpathy and Fei-Fei
Show and Tell: A Neural Image Caption Generator, Vinyals et al.
Long-term Recurrent Convolutional Networks for Visual Recognition and Description, Donahue et al.
Learning a Recurrent Visual Representation for Image Caption Generation, Chen and Zitnick

Image Captioning

*Karpathy et al "Deep Visual-
Semantic Alignments for 
Generating Image Descriptions"



• Original: a basketball player in a white uniform is 
playing with a ball

• Pruned 90%: a basketball player in a white uniform is 
playing with a basketball

• Original : a brown dog is running through a grassy field
• Pruned 90%: a brown dog is running through a grassy 

area

• Original : a soccer player in red is running in the field
• Pruned 95%: a man in a red shirt and black and white 

black shirt is running through a field

• Original : a man is riding a surfboard on a wave
• Pruned 90%: a man in a wetsuit is riding a wave on a 

beach

Pruning NeuralTalk and LSTM



Speedup for Pruned FC layer

CPU GPU mGPU

Baseline: 
• Intel Core i7 5930K: MKL CBLAS GEMV, 

MKL SPBLAS CSRMV 
• NVIDIA GeForce GTX Titan X: cuBLAS 

GEMV, cuSPARSE CSRMV 
• NVIDIA Tegra K1: cuBLAS GEMV, 

cuSPARSE CSRMV

Geo Mean



Energy Efficiency for Pruned FC layer

Baseline: 
• Intel Core i7 5930K: MKL CBLAS GEMV, 

MKL SPBLAS CSRMV 
• NVIDIA GeForce GTX Titan X: cuBLAS 

GEMV, cuSPARSE CSRMV 
• NVIDIA Tegra K1: cuBLAS GEMV, 

cuSPARSE CSRMV

CPU GPU mGPU

Geo Mean



Part 1: Algorithms for Efficient Inference

• 1. Pruning

• 2. Weight Sharing 

• 3. Quantization 

• 4. Low Rank Approximation

• 5. Binary / Ternary Net

• 6. Winograd Transformation



Weight Sharing

Published as a conference paper at ICLR 2016

Figure 2: Representing the matrix sparsity with relative index. Padding filler zero to prevent overflow.

2.09 -0.98 1.48 0.09

0.05 -0.14 -1.08 2.12

-0.91 1.92 0 -1.03

1.87 0 1.53 1.49

-0.03 -0.01 0.03 0.02

-0.01 0.01 -0.02 0.12

-0.01 0.02 0.04 0.01

-0.07 -0.02 0.01 -0.02

0.04

0.02

0.04

-0.03

-0.03 0.12 0.02 -0.07

0.03 0.01

0.02 -0.01 0.01 0.04

 -0.01 -0.02 -0.01 0.01

cluster

   weights 
(32 bit float) centroids

gradient

3 0 2 1

1 1 0 3

0 3 1 0

3 1 2 2

cluster index
  (2 bit uint)

2.00

1.50

0.00

-1.00

-0.02

-0.02

group by

fine-tuned 
centroids

reduce

1.96

1.48

-0.04

-0.97

1:

lr0:

2:

3:

Figure 3: Weight sharing by scalar quantization (top) and centroids fine-tuning (bottom).

We store the sparse structure that results from pruning using compressed sparse row (CSR) or
compressed sparse column (CSC) format, which requires 2a+n+1 numbers, where a is the number
of non-zero elements and n is the number of rows or columns.

To compress further, we store the index difference instead of the absolute position, and encode this
difference in 8 bits for conv layer and 5 bits for fc layer. When we need an index difference larger
than the bound, we the zero padding solution shown in Figure 2: in case when the difference exceeds
8, the largest 3-bit (as an example) unsigned number, we add a filler zero.

3 TRAINED QUANTIZATION AND WEIGHT SHARING

Network quantization and weight sharing further compresses the pruned network by reducing the
number of bits required to represent each weight. We limit the number of effective weights we need to
store by having multiple connections share the same weight, and then fine-tune those shared weights.

Weight sharing is illustrated in Figure 3. Suppose we have a layer that has 4 input neurons and 4
output neurons, the weight is a 4⇥ 4 matrix. On the top left is the 4⇥ 4 weight matrix, and on the
bottom left is the 4⇥ 4 gradient matrix. The weights are quantized to 4 bins (denoted with 4 colors),
all the weights in the same bin share the same value, thus for each weight, we then need to store only
a small index into a table of shared weights. During update, all the gradients are grouped by the color
and summed together, multiplied by the learning rate and subtracted from the shared centroids from
last iteration. For pruned AlexNet, we are able to quantize to 8-bits (256 shared weights) for each
CONV layers, and 5-bits (32 shared weights) for each FC layer without any loss of accuracy.

To calculate the compression rate, given k clusters, we only need log2(k) bits to encode the index. In
general, for a network with n connections and each connection is represented with b bits, constraining
the connections to have only k shared weights will result in a compression rate of:

r =
nb

nlog2(k) + kb
(1)

For example, Figure 3 shows the weights of a single layer neural network with four input units and
four output units. There are 4⇥4 = 16 weights originally but there are only 4 shared weights: similar
weights are grouped together to share the same value. Originally we need to store 16 weights each

3
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Figure 2: Representing the matrix sparsity with relative index. Padding filler zero to prevent overflow.
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Figure 3: Weight sharing by scalar quantization (top) and centroids fine-tuning (bottom).

We store the sparse structure that results from pruning using compressed sparse row (CSR) or
compressed sparse column (CSC) format, which requires 2a+n+1 numbers, where a is the number
of non-zero elements and n is the number of rows or columns.

To compress further, we store the index difference instead of the absolute position, and encode this
difference in 8 bits for conv layer and 5 bits for fc layer. When we need an index difference larger
than the bound, we the zero padding solution shown in Figure 2: in case when the difference exceeds
8, the largest 3-bit (as an example) unsigned number, we add a filler zero.

3 TRAINED QUANTIZATION AND WEIGHT SHARING

Network quantization and weight sharing further compresses the pruned network by reducing the
number of bits required to represent each weight. We limit the number of effective weights we need to
store by having multiple connections share the same weight, and then fine-tune those shared weights.

Weight sharing is illustrated in Figure 3. Suppose we have a layer that has 4 input neurons and 4
output neurons, the weight is a 4⇥ 4 matrix. On the top left is the 4⇥ 4 weight matrix, and on the
bottom left is the 4⇥ 4 gradient matrix. The weights are quantized to 4 bins (denoted with 4 colors),
all the weights in the same bin share the same value, thus for each weight, we then need to store only
a small index into a table of shared weights. During update, all the gradients are grouped by the color
and summed together, multiplied by the learning rate and subtracted from the shared centroids from
last iteration. For pruned AlexNet, we are able to quantize to 8-bits (256 shared weights) for each
CONV layers, and 5-bits (32 shared weights) for each FC layer without any loss of accuracy.

To calculate the compression rate, given k clusters, we only need log2(k) bits to encode the index. In
general, for a network with n connections and each connection is represented with b bits, constraining
the connections to have only k shared weights will result in a compression rate of:

r =
nb

nlog2(k) + kb
(1)

For example, Figure 3 shows the weights of a single layer neural network with four input units and
four output units. There are 4⇥4 = 16 weights originally but there are only 4 shared weights: similar
weights are grouped together to share the same value. Originally we need to store 16 weights each

3

Han et al. Deep Compression, ICLR 2016 (Best Paper Award)

Weight Sharing



Published as a conference paper at ICLR 2016

Figure 2: Representing the matrix sparsity with relative index. Padding filler zero to prevent overflow.

2.09 -0.98 1.48 0.09

0.05 -0.14 -1.08 2.12

-0.91 1.92 0 -1.03

1.87 0 1.53 1.49

-0.03 -0.01 0.03 0.02

-0.01 0.01 -0.02 0.12

-0.01 0.02 0.04 0.01

-0.07 -0.02 0.01 -0.02

0.04

0.02

0.04

-0.03

-0.03 0.12 0.02 -0.07

0.03 0.01

0.02 -0.01 0.01 0.04

 -0.01 -0.02 -0.01 0.01

cluster

   weights 
(32 bit float) centroids

gradient

3 0 2 1

1 1 0 3

0 3 1 0

3 1 2 2

cluster index
  (2 bit uint)

2.00

1.50

0.00

-1.00

-0.02

-0.02

group by

fine-tuned 
centroids

reduce

1.96

1.48

-0.04

-0.97

1:

lr0:

2:

3:

Figure 3: Weight sharing by scalar quantization (top) and centroids fine-tuning (bottom).

We store the sparse structure that results from pruning using compressed sparse row (CSR) or
compressed sparse column (CSC) format, which requires 2a+n+1 numbers, where a is the number
of non-zero elements and n is the number of rows or columns.

To compress further, we store the index difference instead of the absolute position, and encode this
difference in 8 bits for conv layer and 5 bits for fc layer. When we need an index difference larger
than the bound, we the zero padding solution shown in Figure 2: in case when the difference exceeds
8, the largest 3-bit (as an example) unsigned number, we add a filler zero.

3 TRAINED QUANTIZATION AND WEIGHT SHARING

Network quantization and weight sharing further compresses the pruned network by reducing the
number of bits required to represent each weight. We limit the number of effective weights we need to
store by having multiple connections share the same weight, and then fine-tune those shared weights.

Weight sharing is illustrated in Figure 3. Suppose we have a layer that has 4 input neurons and 4
output neurons, the weight is a 4⇥ 4 matrix. On the top left is the 4⇥ 4 weight matrix, and on the
bottom left is the 4⇥ 4 gradient matrix. The weights are quantized to 4 bins (denoted with 4 colors),
all the weights in the same bin share the same value, thus for each weight, we then need to store only
a small index into a table of shared weights. During update, all the gradients are grouped by the color
and summed together, multiplied by the learning rate and subtracted from the shared centroids from
last iteration. For pruned AlexNet, we are able to quantize to 8-bits (256 shared weights) for each
CONV layers, and 5-bits (32 shared weights) for each FC layer without any loss of accuracy.

To calculate the compression rate, given k clusters, we only need log2(k) bits to encode the index. In
general, for a network with n connections and each connection is represented with b bits, constraining
the connections to have only k shared weights will result in a compression rate of:

r =
nb

nlog2(k) + kb
(1)

For example, Figure 3 shows the weights of a single layer neural network with four input units and
four output units. There are 4⇥4 = 16 weights originally but there are only 4 shared weights: similar
weights are grouped together to share the same value. Originally we need to store 16 weights each
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Figure 3: Weight sharing by scalar quantization (top) and centroids fine-tuning (bottom).

We store the sparse structure that results from pruning using compressed sparse row (CSR) or
compressed sparse column (CSC) format, which requires 2a+n+1 numbers, where a is the number
of non-zero elements and n is the number of rows or columns.

To compress further, we store the index difference instead of the absolute position, and encode this
difference in 8 bits for conv layer and 5 bits for fc layer. When we need an index difference larger
than the bound, we the zero padding solution shown in Figure 2: in case when the difference exceeds
8, the largest 3-bit (as an example) unsigned number, we add a filler zero.

3 TRAINED QUANTIZATION AND WEIGHT SHARING

Network quantization and weight sharing further compresses the pruned network by reducing the
number of bits required to represent each weight. We limit the number of effective weights we need to
store by having multiple connections share the same weight, and then fine-tune those shared weights.

Weight sharing is illustrated in Figure 3. Suppose we have a layer that has 4 input neurons and 4
output neurons, the weight is a 4⇥ 4 matrix. On the top left is the 4⇥ 4 weight matrix, and on the
bottom left is the 4⇥ 4 gradient matrix. The weights are quantized to 4 bins (denoted with 4 colors),
all the weights in the same bin share the same value, thus for each weight, we then need to store only
a small index into a table of shared weights. During update, all the gradients are grouped by the color
and summed together, multiplied by the learning rate and subtracted from the shared centroids from
last iteration. For pruned AlexNet, we are able to quantize to 8-bits (256 shared weights) for each
CONV layers, and 5-bits (32 shared weights) for each FC layer without any loss of accuracy.

To calculate the compression rate, given k clusters, we only need log2(k) bits to encode the index. In
general, for a network with n connections and each connection is represented with b bits, constraining
the connections to have only k shared weights will result in a compression rate of:

r =
nb

nlog2(k) + kb
(1)

For example, Figure 3 shows the weights of a single layer neural network with four input units and
four output units. There are 4⇥4 = 16 weights originally but there are only 4 shared weights: similar
weights are grouped together to share the same value. Originally we need to store 16 weights each
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Figure 3: Weight sharing by scalar quantization (top) and centroids fine-tuning (bottom).

We store the sparse structure that results from pruning using compressed sparse row (CSR) or
compressed sparse column (CSC) format, which requires 2a+n+1 numbers, where a is the number
of non-zero elements and n is the number of rows or columns.

To compress further, we store the index difference instead of the absolute position, and encode this
difference in 8 bits for conv layer and 5 bits for fc layer. When we need an index difference larger
than the bound, we the zero padding solution shown in Figure 2: in case when the difference exceeds
8, the largest 3-bit (as an example) unsigned number, we add a filler zero.

3 TRAINED QUANTIZATION AND WEIGHT SHARING

Network quantization and weight sharing further compresses the pruned network by reducing the
number of bits required to represent each weight. We limit the number of effective weights we need to
store by having multiple connections share the same weight, and then fine-tune those shared weights.

Weight sharing is illustrated in Figure 3. Suppose we have a layer that has 4 input neurons and 4
output neurons, the weight is a 4⇥ 4 matrix. On the top left is the 4⇥ 4 weight matrix, and on the
bottom left is the 4⇥ 4 gradient matrix. The weights are quantized to 4 bins (denoted with 4 colors),
all the weights in the same bin share the same value, thus for each weight, we then need to store only
a small index into a table of shared weights. During update, all the gradients are grouped by the color
and summed together, multiplied by the learning rate and subtracted from the shared centroids from
last iteration. For pruned AlexNet, we are able to quantize to 8-bits (256 shared weights) for each
CONV layers, and 5-bits (32 shared weights) for each FC layer without any loss of accuracy.

To calculate the compression rate, given k clusters, we only need log2(k) bits to encode the index. In
general, for a network with n connections and each connection is represented with b bits, constraining
the connections to have only k shared weights will result in a compression rate of:

r =
nb

nlog2(k) + kb
(1)

For example, Figure 3 shows the weights of a single layer neural network with four input units and
four output units. There are 4⇥4 = 16 weights originally but there are only 4 shared weights: similar
weights are grouped together to share the same value. Originally we need to store 16 weights each

3

Han et al. Deep Compression, ICLR 2016 (Best Paper Award)

Weight Sharing



Published as a conference paper at ICLR 2016

Figure 2: Representing the matrix sparsity with relative index. Padding filler zero to prevent overflow.
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compressed sparse column (CSC) format, which requires 2a+n+1 numbers, where a is the number
of non-zero elements and n is the number of rows or columns.
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difference in 8 bits for conv layer and 5 bits for fc layer. When we need an index difference larger
than the bound, we the zero padding solution shown in Figure 2: in case when the difference exceeds
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number of bits required to represent each weight. We limit the number of effective weights we need to
store by having multiple connections share the same weight, and then fine-tune those shared weights.

Weight sharing is illustrated in Figure 3. Suppose we have a layer that has 4 input neurons and 4
output neurons, the weight is a 4⇥ 4 matrix. On the top left is the 4⇥ 4 weight matrix, and on the
bottom left is the 4⇥ 4 gradient matrix. The weights are quantized to 4 bins (denoted with 4 colors),
all the weights in the same bin share the same value, thus for each weight, we then need to store only
a small index into a table of shared weights. During update, all the gradients are grouped by the color
and summed together, multiplied by the learning rate and subtracted from the shared centroids from
last iteration. For pruned AlexNet, we are able to quantize to 8-bits (256 shared weights) for each
CONV layers, and 5-bits (32 shared weights) for each FC layer without any loss of accuracy.

To calculate the compression rate, given k clusters, we only need log2(k) bits to encode the index. In
general, for a network with n connections and each connection is represented with b bits, constraining
the connections to have only k shared weights will result in a compression rate of:

r =
nb

nlog2(k) + kb
(1)

For example, Figure 3 shows the weights of a single layer neural network with four input units and
four output units. There are 4⇥4 = 16 weights originally but there are only 4 shared weights: similar
weights are grouped together to share the same value. Originally we need to store 16 weights each
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We store the sparse structure that results from pruning using compressed sparse row (CSR) or
compressed sparse column (CSC) format, which requires 2a+n+1 numbers, where a is the number
of non-zero elements and n is the number of rows or columns.

To compress further, we store the index difference instead of the absolute position, and encode this
difference in 8 bits for conv layer and 5 bits for fc layer. When we need an index difference larger
than the bound, we the zero padding solution shown in Figure 2: in case when the difference exceeds
8, the largest 3-bit (as an example) unsigned number, we add a filler zero.

3 TRAINED QUANTIZATION AND WEIGHT SHARING

Network quantization and weight sharing further compresses the pruned network by reducing the
number of bits required to represent each weight. We limit the number of effective weights we need to
store by having multiple connections share the same weight, and then fine-tune those shared weights.

Weight sharing is illustrated in Figure 3. Suppose we have a layer that has 4 input neurons and 4
output neurons, the weight is a 4⇥ 4 matrix. On the top left is the 4⇥ 4 weight matrix, and on the
bottom left is the 4⇥ 4 gradient matrix. The weights are quantized to 4 bins (denoted with 4 colors),
all the weights in the same bin share the same value, thus for each weight, we then need to store only
a small index into a table of shared weights. During update, all the gradients are grouped by the color
and summed together, multiplied by the learning rate and subtracted from the shared centroids from
last iteration. For pruned AlexNet, we are able to quantize to 8-bits (256 shared weights) for each
CONV layers, and 5-bits (32 shared weights) for each FC layer without any loss of accuracy.

To calculate the compression rate, given k clusters, we only need log2(k) bits to encode the index. In
general, for a network with n connections and each connection is represented with b bits, constraining
the connections to have only k shared weights will result in a compression rate of:

r =
nb

nlog2(k) + kb
(1)

For example, Figure 3 shows the weights of a single layer neural network with four input units and
four output units. There are 4⇥4 = 16 weights originally but there are only 4 shared weights: similar
weights are grouped together to share the same value. Originally we need to store 16 weights each
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Pruning + Trained Quantization

AlexNet on ImageNet
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Results of Deep Compression

Network Original 
Size

Compressed 
Size

Compression  
Ratio

Original 
Accuracy

Compressed 
Accuracy

LeNet-300 1070KB 27KB 40x 98.36% 98.42%

LeNet-5 1720KB 44KB 39x 99.20% 99.26%

AlexNet 240MB 6.9MB 35x 80.27% 80.30%

VGGNet 550MB 11.3MB 49x 88.68% 89.09%

GoogleNet 28MB 2.8MB 10x 88.90% 88.92%

SqueezeNet 4.8MB 0.47MB 10x 80.32% 80.35%

Han et al. Deep Compression, ICLR 2016 (Best Paper Award)
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Quantizing the Weight and Activation

• Train with float
• Quantizing the weight and 

activation:
• Gather the statistics for 

weight and activation
• Choose proper radix point 

position
• Fine-tune in float format
• Convert to fixed-point format

Qiu et al.  Going Deeper with Embedded FPGA Platform for Convolutional Neural Network, FPGA’16
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Quantization Result
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Low Rank Approximation for Conv

Zhang et al Efficient and Accurate Approximations of Nonlinear Convolutional Networks CVPR’15



Zhang et al Efficient and Accurate Approximations of Nonlinear Convolutional Networks CVPR’15

Low Rank Approximation for Conv



Novikov et al Tensorizing Neural Networks, NIPS’15

Low Rank Approximation for FC
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Binary / Ternary Net: Motivation
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Figure 2: Weight distribution of the original GoogLeNet (a), pruned GoogLeNet (b), after retraining
the sparsity-constrained GoogLeNet (c), ignoring the sparisty constraint and recovering the zero
weights (d), and after retraining the dense network (e).

Initial Dense Training: The first D step learns the connection weights and importance via normal
network training on the dense network. Unlike conventional training, however, the goal of this D step
is not only to learn the values of the weights; we are also learning which connections are important.
We use the simple heuristic to quantify the importance of the weights using their absolute value.

Sparse Training: The S step prunes the low-weight connections and trains a sparse network. We
applied the same sparsity to all the layers, thus there’s a single hyper parameter: the sparsity, the
percentage of weights that are pruned to 0. For each layer W with N parameters, we sorted the
parameters, picked the k-th largest one � = S

k

as the threshold where k = N ⇤ (1� sparsity), and
generated a binary mask to remove all the weights smaller than �. Details are shown in Algorithm 1 .

The reason behind removing small weight is partially due to the Taylor expansion of the loss function,
shown in Equation (1)(2). We want to minimize the increase in Loss when conducting hard threshold
in pruning, so we need to minimize the first and second terms in equation 2. Since we are zeroing
out parameters, �W

i

is actually W

i

� 0 = W

i

. At local minimum point with @Loss/@W

i

⇡ 0

and @

2
Loss

@W

2
i

> 0, only the second order term matters. Since second order gradient @2
Loss/@W

2
i

is
expensive to calculate and W

i

has a power of 2, we use |W
i

| as the metric of pruning. Smaller |W
i

|
means smaller increase to the loss function.

Loss = f(x,W1,W2,W3...) (1)

�Loss =
@Loss

@W

i

�W

i

+
1

2

@

2
Loss

@W

2
i

�W

i

2 + ... (2)

Retraining while enforcing the binary mask in each iteration, we converted a dense network into
a sparse network which has a known sparsity support and can fully recover or even increase the
original accuracy of initial dense model under the sparsity constraint. The sparsity can be tuned using
validation and we found values between 25% and 50% generally work well in our experiments.

Final Dense Training: The final D step recovers the pruned connections, making the network dense
again. These previously-pruned connections are initialized to zero and the entire network is retrained
with 1/10 the original learning rate (since the sparse network is already at a good local minima).
Hyper parameters like dropout ratios and weight decay remained unchanged. By restoring the pruned
connections, the final D step increases the model capacity of the network and make it possible to
arrive at a better local minima compared with the sparse model from S step.

To visualize the DSD training flow, we plotted the progression of weight distribution in Figure 2.
The figure is plotted using GoogLeNet inception_5b3x3 layer, and we found that this progression of
weight distribution is very representative for VGGNet and ResNet as well. The original distribution
of weight is centered on zero with tails dropping off quickly. Pruning is based on absolute value so
after pruning the large center region is truncated away. The network parameters un-truncated adjust
themselves during the retraining phase, so in (c) the boundary becomes soft and forms a bimodal
distribution. In (d), at the beginning of the re-dense training step, all the pruned weights come back
again and are reinitialized to zero. Finally, in (e), the previously-pruned weights are retrained together
with the survived weights. In this step, we kept the same learning hyper-parameters (weight decay,
learning rate, etc.) for reborn weights and old weights. Comparing Figure (d) and (e), the old weights’
distribution almost remained the same, while the new weights become more spread around zero. The
overall mean absolute value of the weight distribution is much smaller.
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• Binarize both	weights	and	inputs
• Convolution	as	Binary	dot	product
• Dot	product	between	implemented	
by	XNOR-Bitcounting operations

Rastegari et al. XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks ECCV 2016

Binary-Weight-Network and XNOR-Network
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Binary-Weight-Network and XNOR-Network

Rastegari et al. XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks ECCV 2016



Trained Ternary Quantization
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Weight Evolution during Training

Under review as a conference paper at ICLR 2017

Equation 2. We use scaled gradients for 32-bit weights:

@L

@w̃l
=

8
>>>>>>><

>>>>>>>:

W p
l ⇥ @L

@wt
l

: w̃l > �l

1⇥ @L

@wt
l

: |w̃l|  �l

Wn
l ⇥ @L

@wt
l

: w̃l < ��l

(8)

Note we use scalar number 1 as factor of gradients of zero weights. The overall quantization process
is illustrated as Figure 1. The evolution of the ternary weights from different layers during training is
shown in Figure 2. We observe that as training proceeds, different layers behave differently: for the
first quantized conv layer, the absolute values of W p

l and Wn
l get smaller and sparsity gets lower,

while for the last conv layer and fully connected layer, the absolute values of W p
l and Wn

l get larger
and sparsity gets higher.

We learn the ternary assignments (index to the codebook) by updating the latent full-resolution
weights during training. This may cause the assignments to change between iterations. Note that
the thresholds are not constants as the maximal absolute values change over time. Once an updated
weight crosses the threshold, the ternary assignment is changed.

The benefits of using trained quantization factors are: i) The asymmetry of W p
l 6= Wn

l enables
neural networks to have more model capacity. ii) Quantized weights play the role of "learning rate
multipliers" during back propagation.

3.2 QUANTIZATION HEURISTIC

In previous work on ternary weight networks, Li & Liu (2016) proposed Ternary Weight Networks
(TWN) using ±�l as thresholds to reduce 32-bit weights to ternary values, where ±�l is defined
as Equation 5. They optimized value of ±�l by minimizing expectation of L2 distance between
full precision weights and ternary weights. Instead of using a strictly optimized threshold, we adopt
different heuristics: 1) use the maximum absolute value of the weights as a reference to the layer’s
threshold and maintain a constant factor t for all layers:

�l = t⇥ max(|w̃|) (9)

and 2) maintain a constant sparsity r for all layers throughout training. By adjusting the hyper-
parameter r we are able to obtain ternary weight networks with various sparsities. We use the first
method and set t to 0.05 in experiments on CIFAR-10 and ImageNet dataset and use the second one
to explore a wider range of sparsities in section 5.1.1.
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Visualization of the TTQ Kernels

Pruning Trained Quantization Huffman Coding

Zhu, Han, Mao, Dally. Trained Ternary Quantization, ICLR’17



Error Rate on ImageNet

Pruning Trained Quantization Huffman Coding

Zhu, Han, Mao, Dally. Trained Ternary Quantization, ICLR’17



Lin, Zhouhan, et al. "Neural networks with few multiplications." arXiv preprint 
arXiv:1510.03009 (2015).

Introduce Binary and Ternary Connection.

Use probabilistic quantization method.

Introduce concept of latent weights.

Zhou, Shuchang, et al. "DoReFa-Net: Training Low Bitwidth Convolutional 

Neural Networks with Low Bitwidth Gradients." arXiv preprint 
arXiv:1606.06160 (2016).

Adopt Thresholding quantization method.

Related Works



Related Works

Li, Fengfu, and Bin Liu. "Ternary Weight Networks." arXiv preprint 
arXiv:1605.04711 (2016).

Treat quantization as an optimization problem: 

Back-propagate using identical mapping.

Rastegari, Mohammad, et al. "XNOR-Net: ImageNet Classification Using Binary 
Convolutional Neural Networks." arXiv preprint arXiv:1603.05279(2016).

Same strategy on binary weights.
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Winograd Convolution

P = ⌈H/m⌉⌈W/m⌉ tiles per channel, C. F (m×m, r×r)
is then computed for each tile and filter combination in each
channel, and the results are summed over all channels.

Substituting U = GgGT and V = BT dB, we have:

Y = AT
[
U ⊙ V

]
A (9)

Labeling tile coordinates as (x̃, ỹ), we rewrite the con-
vnet layer formula (2) for a single image i, filter k, and tile
coordinate (x̃, ỹ) as:

Yi,k,x̃,ỹ =
C∑

c=1

Di,c,x̃,ỹ ∗Gk,c

=
C∑

c=1

AT

[
Uk,c ⊙ Vc,i,x̃,ỹ

]
A

= AT

[ C∑

c=1

Uk,c ⊙ Vc,i,x̃,ỹ

]
A

(10)

Thus we can reduce over C channels in transform space,
and only then apply the inverse transform A to the sum.
This amortizes the cost of the inverse transform over the
number of channels.

We examine the sum

Mk,i,x̃,ỹ =
C∑

c=1

Uk,c ⊙ Vc,i,x̃,ỹ (11)

and simplify the notation by collapsing the image/tile coor-
dinates (i, x̃, ỹ) down to a single dimension, b. We also la-
bel each component of the element-wise multiplication sep-
arately, as (ξ, ν), yielding:

M (ξ,ν)
k,b =

C∑

c=1

U (ξ,ν)
k,c V (ξ,ν)

c,b (12)

This equation is just a matrix multiplication, so we can
write:

M (ξ,ν) = U (ξ,ν)V (ξ,ν) (13)
Matrix multiply has efficient implementations on CPU,

GPU, and FPGA platforms, owing to its high computational
intensity. Thus we have arrived at the practical implemen-
tation for the fast algorithm listed in Algorithm 1.

Winograd documented a technique for generating the
minimal filtering algorithm F (m, r) for any choice of m
and r. The construction uses the Chinese remainder the-
orem to produce a minimal algorithm for linear convolu-
tion, which is equivalent to polynomial multiplication, then
transposes the linear convolution algorithm to yield a min-
imal filtering algorithm. The reader is referred to Wino-
grad’s seminal book [13], or Blahut’s book [2] for a mod-
ern treatment of the subject. We provide derivations of the
specific algorithms used in this paper in the supplementary
material.

Algorithm 1 Compute Convnet Layer with Winograd Min-
imal Filtering Algorithm F (m×m, r × r)

P = N⌈H/m⌉⌈W/m⌉ is the number of image tiles.
α = m+ r − 1 is the input tile size.
Neighboring tiles overlap by r − 1.
dc,b ∈ Rα×α is input tile b in channel c.
gk,c ∈ Rr×r is filter k in channel c.
G, BT , and AT are filter, data, and inverse transforms.
Yk,b ∈ Rm×m is output tile b in filter k.
for k = 0 to K do

for c = 0 to C do
u = Ggk,cGT ∈ Rα×α

Scatter u to matrices U: U (ξ,ν)
k,c = uξ,ν

for b = 0 to P do
for c = 0 to C do

v = BTdc,bB ∈ Rα×α

Scatter v to matrices V: V (ξ,ν)
c,b = vξ,ν

for ξ = 0 to α do
for ν = 0 to α do

M (ξ,ν) = U (ξ,ν)V (ξ,ν)

for k = 0 to K do
for b = 0 to P do

Gather m from matrices M: mξ,ν = M (ξ,ν)
k,b

Yk,b = ATmA

4.2. F(3x3,2x2)

Training a network using stochastic gradient descent re-
quires computation of the gradients with respect to the in-
puts and weights. For a convnet layer, the gradient with re-
spect to the inputs is a convolution of the next layer’s back-
propagated error, of dimension N × K × H × W , with a
flipped version of the layer’s R × S filters. Therefore it
can be computed using the same algorithm that is used for
forward propagation.

The gradient with respect to the weights is a convolution
of the layer inputs with the backpropagated errors, produc-
ing R×S outputs per filter and channel. Therefore we need
to compute the convolutionF (R×S,H×W ), which is im-
practical because H×W is much too large for our fast algo-
rithms. Instead we decompose this convolution into a direct
sum of smaller convolutions, for example F (3 × 3, 2 × 2).
Here the algorithm’s 4 × 4 tiles are overlapped by 2 pixels
in each dimension, and the 3 × 3 outputs are summed over
all tiles to form F (3× 3, H ×W ).

Winograd. Arithmetic complexity of computations, volume 33. Siam, 1980 
Lavin & Gray, Fast Algorithms for Convolutional Neural Networks, 2015 
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Figure 1: Combining Winograd convolution with sparse weights and activations. (a) Original
Winograd-based convolution proposed by Lavin (2015) fills in the non-zeros in both the weights
and activations. (b) Pruning the 4⇥ 4 transformed kernel restores sparsity to the weights. (c) Mov-
ing the ReLU layer after Winograd transformation also restores sparsity to the activations.

During the dense training phase, we train a dense 4⇥ 4 kernel (for m = 2) directly in the transform
domain. The transformed kernel is initialized and trained directly by back-propagation through the
inverse transform — eliminating the need to maintain a kernel in the spatial domain or to transform
a spatial kernel.

During the pruning phase, we prune the transformed kernel by computing the threshold T required
to achieve a desired pruning rate R and setting all weights less than T to zero. In our experiments
we used the same R for all network layers. Because sensitivity varies from layer to layer, we expect
that better performance could be achieved by varying the pruning rate Ri for each layer i.

During retraining, we retrain the model using a ”sparsity mask” to force the weights that were pruned
to remain zero.

3 MOVING RELU TO THE WINOGRAD DOMAIN

In conventional CNNs, the ReLU non-linearity is applied to the output activations of the previous
layer to produce the input activations of the current layer (Figure 1a & b). The ReLU operation
zeros all negative activations resulting in significant sparsity in the spatial input activations. Unfor-
tunately, the Winograd transform fills in this sparsity, resulting in dense transformed activations and
no savings in the number of multiplies.

To give sparse activations in the transformed domain, where the multiplies are performed, we move
the ReLU operation after the Winograd transform (Figure 1c). The ReLU zeros all negative trans-
formed activations, reducing the number of multiplies. Because this ReLU is really associated with
the previous layer, we perform this transformed ReLU starting with layer 2.

4 RESULTS

We used Tensorflow (Abadi et al. (2016)) and Tensorpack (Wu (2016)) to train VGG-nagadomi
(Nagadomi (2014))(Simonyan & Zisserman (2014)) on the CIFAR-10 dataset (Krizhevsky & Hinton

2

Producing 4 output pixels: 

Direct Convolution: 
- 4*9=36 multiplications (1x) 

Winograd convolution: 
- 4*4=16 multiplications (2.25x less) 

Liu et al. “Efficient Sparse-Winograd Convolutional Neural Networks”, submitted to ICLR 2017 workshop
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Figure 1: Combining Winograd convolution with sparse weights and activations. (a) Original
Winograd-based convolution proposed by Lavin (2015) fills in the non-zeros in both the weights
and activations. (b) Pruning the 4⇥ 4 transformed kernel restores sparsity to the weights. (c) Mov-
ing the ReLU layer after Winograd transformation also restores sparsity to the activations.

During the dense training phase, we train a dense 4⇥ 4 kernel (for m = 2) directly in the transform
domain. The transformed kernel is initialized and trained directly by back-propagation through the
inverse transform — eliminating the need to maintain a kernel in the spatial domain or to transform
a spatial kernel.

During the pruning phase, we prune the transformed kernel by computing the threshold T required
to achieve a desired pruning rate R and setting all weights less than T to zero. In our experiments
we used the same R for all network layers. Because sensitivity varies from layer to layer, we expect
that better performance could be achieved by varying the pruning rate Ri for each layer i.

During retraining, we retrain the model using a ”sparsity mask” to force the weights that were pruned
to remain zero.

3 MOVING RELU TO THE WINOGRAD DOMAIN

In conventional CNNs, the ReLU non-linearity is applied to the output activations of the previous
layer to produce the input activations of the current layer (Figure 1a & b). The ReLU operation
zeros all negative activations resulting in significant sparsity in the spatial input activations. Unfor-
tunately, the Winograd transform fills in this sparsity, resulting in dense transformed activations and
no savings in the number of multiplies.

To give sparse activations in the transformed domain, where the multiplies are performed, we move
the ReLU operation after the Winograd transform (Figure 1c). The ReLU zeros all negative trans-
formed activations, reducing the number of multiplies. Because this ReLU is really associated with
the previous layer, we perform this transformed ReLU starting with layer 2.

4 RESULTS

We used Tensorflow (Abadi et al. (2016)) and Tensorpack (Wu (2016)) to train VGG-nagadomi
(Nagadomi (2014))(Simonyan & Zisserman (2014)) on the CIFAR-10 dataset (Krizhevsky & Hinton

2

Liu et al. “Efficient Sparse-Winograd Convolutional Neural Networks”, submitted to ICLR 2017 workshop

Producing 4 output pixels: 

Direct Convolution: 
- 4*9=36 multiplications (1x) 
- sparse weight [NIPS’15] (3x) 
- sparse activation (relu) (3x) 
- Overall saving: 9x 

Winograd convolution: 
- 4*4=16 multiplications (2.25x less) 
- dense  weight (1x) 
- dense activation (1x) 
- Overall saving: 2.25x

Training in the Winograd Domain
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Figure 1: Combining Winograd convolution with sparse weights and activations. (a) Original
Winograd-based convolution proposed by Lavin (2015) fills in the non-zeros in both the weights
and activations. (b) Pruning the 4⇥ 4 transformed kernel restores sparsity to the weights. (c) Mov-
ing the ReLU layer after Winograd transformation also restores sparsity to the activations.

During the dense training phase, we train a dense 4⇥ 4 kernel (for m = 2) directly in the transform
domain. The transformed kernel is initialized and trained directly by back-propagation through the
inverse transform — eliminating the need to maintain a kernel in the spatial domain or to transform
a spatial kernel.

During the pruning phase, we prune the transformed kernel by computing the threshold T required
to achieve a desired pruning rate R and setting all weights less than T to zero. In our experiments
we used the same R for all network layers. Because sensitivity varies from layer to layer, we expect
that better performance could be achieved by varying the pruning rate Ri for each layer i.

During retraining, we retrain the model using a ”sparsity mask” to force the weights that were pruned
to remain zero.

3 MOVING RELU TO THE WINOGRAD DOMAIN

In conventional CNNs, the ReLU non-linearity is applied to the output activations of the previous
layer to produce the input activations of the current layer (Figure 1a & b). The ReLU operation
zeros all negative activations resulting in significant sparsity in the spatial input activations. Unfor-
tunately, the Winograd transform fills in this sparsity, resulting in dense transformed activations and
no savings in the number of multiplies.

To give sparse activations in the transformed domain, where the multiplies are performed, we move
the ReLU operation after the Winograd transform (Figure 1c). The ReLU zeros all negative trans-
formed activations, reducing the number of multiplies. Because this ReLU is really associated with
the previous layer, we perform this transformed ReLU starting with layer 2.

4 RESULTS

We used Tensorflow (Abadi et al. (2016)) and Tensorpack (Wu (2016)) to train VGG-nagadomi
(Nagadomi (2014))(Simonyan & Zisserman (2014)) on the CIFAR-10 dataset (Krizhevsky & Hinton

2

Liu et al. “Efficient Sparse-Winograd Convolutional Neural Networks”, submitted to ICLR 2017 workshop

Producing 4 output pixels: 

Direct Convolution: 
- 4*9=36 multiplications (1x) 
- sparse weight [NIPS’15] (3x) 
- sparse activation (relu) (3x) 
- Overall saving: 9x 

Winograd convolution: 
- 4*4=16 multiplications (2.25x less) 
- sparse weight (2.5x) 
- dense activation (2.25x) 
- Overall saving: 12x

Solution: Fold Relu into Winograd
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Figure 2: Test accuracy vs density for the three architectures of Figure 1 on VGG-nagadomi.

re-training until accuracy converges. We varied the pruning rate R from 20% to 70%. The first
convolution layer is not included in pruning but is included in re-training.

Figure 2 shows accuracy as a function of density for the three architectures of Figure 1. The network
of Figure 1c (which moves pruning and ReLU to the transform domain) can be pruned to 40%
density without significant (> 0.1%) loss of accuracy. The conventional network of Figure 1a can
only be pruned to 60% density before accuracy falls.

Figure 3: Activation density of convolution layers of VGG-nagadomi. Whiskers show one standard
deviation above and below the mean.

Figure 3 shows the activation density for each network layer for the architectures of Figure 1a and
1c. Moving ReLU into the Winograd domain is effective in achieving activation sparsity with an
overall activation density of 41.1% compared to 36.9% density for the spatial activations.

The original VGG-nagadomi network (no pruning, no Winograd) requires 2.3 ⇥ 108 multiplies
per forward pass. Pruning this network and exploiting sparse activations reduces this by 4.6⇥ to
5.0⇥107. Using the Winograd transformation (Figure 1a) requires 1.1⇥108 multiplies, a reduction
of 2.2⇥ compared to the original network, but an increase of 2.1⇥ compared to the pruned network.
Moving pruning and ReLU into the Winograd domain requires 2.3⇥107 multiplies. It combines the
2.2⇥ savings from Winograd with the 4.6⇥ savings from sparsity to give a net reduction of 10.2⇥
compared to the original network.

5 CONCLUSION

We have shown that we can combine the ⇡ 5⇥ computation savings of sparse weights and activa-
tions with the 2�4⇥ savings of the Winograd transform by making two modifcations to conventional
CNNs. To make the weights sparse at the point of multiplication, we train and prune the weights
in the transform domain. We move the ReLU non-linear operation after the Winograd transform to
make the activations sparse at the point of multiplication. The net result is a 10.2⇥ reduction in
computation for a 2⇥ 2 output patch (m = 2) with no loss of accuracy.

We expect that even greater savings on computation can be realized by using larger patch sizes (e.g.,
m = 4) and by using different pruning rates Ri for each network layer. To determine the scope of
these techniques, they need to be evaluated on larger networks and data sets and on networks with
residual bypassing layers (He et al. (2016)).
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Figure 3 shows the activation density for each network layer for the architectures of Figure 1a and
1c. Moving ReLU into the Winograd domain is effective in achieving activation sparsity with an
overall activation density of 41.1% compared to 36.9% density for the spatial activations.

The original VGG-nagadomi network (no pruning, no Winograd) requires 2.3 ⇥ 108 multiplies
per forward pass. Pruning this network and exploiting sparse activations reduces this by 4.6⇥ to
5.0⇥107. Using the Winograd transformation (Figure 1a) requires 1.1⇥108 multiplies, a reduction
of 2.2⇥ compared to the original network, but an increase of 2.1⇥ compared to the pruned network.
Moving pruning and ReLU into the Winograd domain requires 2.3⇥107 multiplies. It combines the
2.2⇥ savings from Winograd with the 4.6⇥ savings from sparsity to give a net reduction of 10.2⇥
compared to the original network.
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We have shown that we can combine the ⇡ 5⇥ computation savings of sparse weights and activa-
tions with the 2�4⇥ savings of the Winograd transform by making two modifcations to conventional
CNNs. To make the weights sparse at the point of multiplication, we train and prune the weights
in the transform domain. We move the ReLU non-linear operation after the Winograd transform to
make the activations sparse at the point of multiplication. The net result is a 10.2⇥ reduction in
computation for a 2 ⇥ 2 output patch (m = 2) with no loss of accuracy.

We expect that even greater savings on computation can be realized by using larger patch sizes (e.g.,
m = 4) and by using different pruning rates Ri for each network layer. To determine the scope of
these techniques, they need to be evaluated on larger networks and data sets and on networks with
residual bypassing layers (He et al. (2016)).
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Figure 15. Layout (65nm).

Component Area Power Critical
or Block in µm2 (%) in mW (%) path in ns
ACCELERATOR 3,023,077 485 1.02
Combinational 608,842 (20.14%) 89 (18.41%)
Memory 1,158,000 (38.31%) 177 (36.59%)
Registers 375,882 (12.43%) 86 (17.84%)
Clock network 68,721 (2.27%) 132 (27.16%)
Filler cell 811,632 (26.85%)
SB 1,153,814 (38.17%) 105 (22.65%)
NBin 427,992 (14.16%) 91 (19.76%)
NBout 433,906 (14.35%) 92 (19.97%)
NFU 846,563 (28.00%) 132 (27.22%)
CP 141,809 (5.69%) 31 (6.39%)
AXIMUX 9,767 (0.32%) 8 (2.65%)
Other 9,226 (0.31%) 26 (5.36%)

Table 6. Characteristics of accelerator and breakdown by com-
ponent type (first 5 lines), and functional block (last 7 lines).

logic which is in charge of reading data out of NBin/NBout;
next versions will focus on how to reduce or pipeline this
critical path. The total RAM capacity (NBin + NBout + SB
+ CP instructions) is 44KB (8KB for the CP RAM). The area
and power are dominated by the buffers (NBin/NBout/SB) at
respectively 56% and 60%, with the NFU being a close sec-
ond at 28% and 27%. The percentage of the total cell power
is 59.47%, but the routing network (included in the different
components of the table breakdown) accounts for a signif-
icant share of the total power at 38.77%. At 65nm, due to
the high toggle rate of the accelerator, the leakage power is
almost negligible at 1.73%.

Finally, we have also evaluated a design with T

n

= 8,
and thus 64 multipliers in NFU-1. The total area for that
design is 0.85 mm

2, i.e., 3.59x smaller than for T
n

= 16
due to the reduced buffer width and the fewer number of
arithmetic operators. We plan to investigate larger designs
with T

n

= 32 or 64 in the near future.

7.2 Time and Throughput
In Figure 16, we report the speedup of the accelerator over
SIMD, see SIMD/Acc. Recall that we use a 128-bit SIMD
processor, so capable of performing up to 8 16-bit operations

Figure 16. Speedup of accelerator over SIMD, and of ideal ac-
celerator over accelerator.

every cycle (we naturally use 16-bit fixed-point operations
in the SIMD as well). As mentioned in Section 7.1, the
accelerator performs 496 16-bit operations every cycle for
both classifier and convolutional layers, i.e., 62x more (4968 )
than the SIMD core. We empirically observe that on these
two types of layers, the accelerator is on average 117.87x
faster than the SIMD core, so about 2x above the ratio
of computational operators (62x). We measured that, for
classifier and convolutional layers, the SIMD core performs
2.01 16-bit operations per cycle on average, instead of the
upper bound of 8 operations per cycle. We traced this back
to two major reasons.

First, better latency tolerance due to an appropriate com-
bination of preloading and reuse in NBin and SB buffers;
note that we did not implement a prefetcher in the SIMD
core, which would partly bridge that gap. This explains the
high performance gap for layers CLASS1, CLASS3 and
CONV5 which have the largest feature maps sizes, thus
the most spatial locality, and which then benefit most from
preloading, giving them a performance boost, i.e., 629.92x
on average, about 3x more than other convolutional layers;
we expect that a prefetcher in the SIMD core would cancel
that performance boost. The spatial locality in NBin is ex-
ploited along the input feature map dimension by the DMA,
and with a small N

i

, the DMA has to issue many short mem-
ory requests, which is less efficient. The rest of the convolu-
tional layers (CONV1 to CONV4) have an average speedup
of 195.15x; CONV2 has a lesser performance (130.64x) due
to private kernels and less spatial locality. Pooling layers
have less performance overall because only the adder tree in
NFU-2 is used (240 operators out of 496 operators), 25.73x
for POOL3 and 25.52x for POOL5.

In order to further analyze the relatively poor behav-
ior of POOL1 (only 2.17x over SIMD), we have tested a
configuration of the accelerator where all operands (inputs
and synapses) are ready for the NFU, i.e., ideal behavior
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Figure 9. Full hardware implementation of neural networks.
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Figure 10. Energy, critical path and area of full-hardware layers.

neuron to a neuron of the next layer, and from one synap-
tic latch to the associated neuron. For instance, an execution
time of 15ns and an energy reduction of 974x over a core
has been reported for a 90-10-10 (90 inputs, 10 hidden, 10
outputs) perceptron [38].

4.2 Maximum Number of Hardware Neurons ?
However, the area, energy and delay grow quadratically with
the number of neurons. We have synthesized the ASIC ver-
sions of neural network layers of various dimensions, and
we report their area, critical path and energy in Figure 10.
We have used Synopsys ICC for the place and route, and the
TSMC 65nm GP library, standard VT. A hardware neuron
performs the following operations: multiplication of inputs
and synapses, addition of all such multiplications, followed
by a sigmoid, see Figure 9. A T

n

⇥ T

i

layer is a layer of T

n

neurons with T

i

synapses each. A 16x16 layer requires less
than 0.71 mm2, but a 32x32 layer already costs 2.66 mm2.
Considering the neurons are in the thousands for large-scale
neural networks, a full hardware layout of just one layer
would range in the hundreds or thousands of mm2, and thus,
this approach is not realistic for large-scale neural networks.

For such neural networks, only a fraction of neurons and
synapses can be implemented in hardware. Paradoxically,
this was already the case for old neural network designs
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Figure 11. Accelerator.

such as the Intel ETANN [18] at the beginning of the 1990s,
not because neural networks were already large at the time,
but because hardware resources (number of transistors) were
naturally much more scarce. The principle was to time-
share the physical neurons and use the on-chip RAM to
store synapses and intermediate neurons values of hidden
layers. However, at that time, many neural networks were
small enough that all synapses and intermediate neurons
values could fit in the neural network RAM. Since this is no
longer the case, one of the main challenges for large-scale
neural network accelerator design has become the interplay
between the computational and the memory hierarchy.

5. Accelerator for Large Neural Networks
In this section, we draw from the analysis of Sections 3 and
4 to design an accelerator for large-scale neural networks.

The main components of the accelerator are the fol-
lowing: an input buffer for input neurons (NBin), an out-
put buffer for output neurons (NBout), and a third buffer
for synaptic weights (SB), connected to a computational
block (performing both synapses and neurons computations)
which we call the Neural Functional Unit (NFU), and the
control logic (CP), see Figure 11. We first describe the NFU
below, and then we focus on and explain the rationale for the
storage elements of the accelerator.

5.1 Computations: Neural Functional Unit (NFU)

The spirit of the NFU is to reflect the decomposition of
a layer into computational blocks of T

i

inputs/synapses and
T

n

output neurons. This corresponds to loops i and n for
both classifier and convolutional layers, see Figures 5 and
Figure 7, and loop i for pooling layers, see Figure 8.

Arithmetic operators. The computations of each layer
type can be decomposed in either 2 or 3 stages. For classifier
layers: multiplication of synapses ⇥ inputs, additions of all

Figure 15. Layout (65nm).

Component Area Power Critical
or Block in µm2 (%) in mW (%) path in ns
ACCELERATOR 3,023,077 485 1.02
Combinational 608,842 (20.14%) 89 (18.41%)
Memory 1,158,000 (38.31%) 177 (36.59%)
Registers 375,882 (12.43%) 86 (17.84%)
Clock network 68,721 (2.27%) 132 (27.16%)
Filler cell 811,632 (26.85%)
SB 1,153,814 (38.17%) 105 (22.65%)
NBin 427,992 (14.16%) 91 (19.76%)
NBout 433,906 (14.35%) 92 (19.97%)
NFU 846,563 (28.00%) 132 (27.22%)
CP 141,809 (5.69%) 31 (6.39%)
AXIMUX 9,767 (0.32%) 8 (2.65%)
Other 9,226 (0.31%) 26 (5.36%)

Table 6. Characteristics of accelerator and breakdown by com-
ponent type (first 5 lines), and functional block (last 7 lines).

logic which is in charge of reading data out of NBin/NBout;
next versions will focus on how to reduce or pipeline this
critical path. The total RAM capacity (NBin + NBout + SB
+ CP instructions) is 44KB (8KB for the CP RAM). The area
and power are dominated by the buffers (NBin/NBout/SB) at
respectively 56% and 60%, with the NFU being a close sec-
ond at 28% and 27%. The percentage of the total cell power
is 59.47%, but the routing network (included in the different
components of the table breakdown) accounts for a signif-
icant share of the total power at 38.77%. At 65nm, due to
the high toggle rate of the accelerator, the leakage power is
almost negligible at 1.73%.

Finally, we have also evaluated a design with T

n

= 8,
and thus 64 multipliers in NFU-1. The total area for that
design is 0.85 mm

2, i.e., 3.59x smaller than for T

n

= 16
due to the reduced buffer width and the fewer number of
arithmetic operators. We plan to investigate larger designs
with T

n

= 32 or 64 in the near future.

7.2 Time and Throughput
In Figure 16, we report the speedup of the accelerator over
SIMD, see SIMD/Acc. Recall that we use a 128-bit SIMD
processor, so capable of performing up to 8 16-bit operations

Figure 16. Speedup of accelerator over SIMD, and of ideal ac-
celerator over accelerator.

every cycle (we naturally use 16-bit fixed-point operations
in the SIMD as well). As mentioned in Section 7.1, the
accelerator performs 496 16-bit operations every cycle for
both classifier and convolutional layers, i.e., 62x more ( 496

8 )
than the SIMD core. We empirically observe that on these
two types of layers, the accelerator is on average 117.87x
faster than the SIMD core, so about 2x above the ratio
of computational operators (62x). We measured that, for
classifier and convolutional layers, the SIMD core performs
2.01 16-bit operations per cycle on average, instead of the
upper bound of 8 operations per cycle. We traced this back
to two major reasons.

First, better latency tolerance due to an appropriate com-
bination of preloading and reuse in NBin and SB buffers;
note that we did not implement a prefetcher in the SIMD
core, which would partly bridge that gap. This explains the
high performance gap for layers CLASS1, CLASS3 and
CONV5 which have the largest feature maps sizes, thus
the most spatial locality, and which then benefit most from
preloading, giving them a performance boost, i.e., 629.92x
on average, about 3x more than other convolutional layers;
we expect that a prefetcher in the SIMD core would cancel
that performance boost. The spatial locality in NBin is ex-
ploited along the input feature map dimension by the DMA,
and with a small N

i

, the DMA has to issue many short mem-
ory requests, which is less efficient. The rest of the convolu-
tional layers (CONV1 to CONV4) have an average speedup
of 195.15x; CONV2 has a lesser performance (130.64x) due
to private kernels and less spatial locality. Pooling layers
have less performance overall because only the adder tree in
NFU-2 is used (240 operators out of 496 operators), 25.73x
for POOL3 and 25.52x for POOL5.

In order to further analyze the relatively poor behav-
ior of POOL1 (only 2.17x over SIMD), we have tested a
configuration of the accelerator where all operands (inputs
and synapses) are ready for the NFU, i.e., ideal behavior

- Diannao improved CNN computation efficiency by using dedicated functional units 
and memory buffers optimized for the CNN workload.  

- Multiplier + adder tree + shifter + non-linear lookup orchestrated by instructions 
- Weights in off-chip DRAM 
- 452 GOP/s,  3.02 mm^2 and 485 mW

Chen et al. Diannao: A small-footprint high-throughput accelerator for ubiquitous machine-learning, ASPLOS 2014 
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Figure 9: Snapshot of the node layout.

Component/Block Area (µm2) (%) Power (W ) (%)
WHOLE CHIP 67,732,900 15.97
Central Block 7,898,081 (11.66%) 1.80 (11.27%)
Tiles 30,161,968 (44.53%) 6.15 ( 38.53%)
HTs 17,620,440 (26.02%) 8.01 ( 50.14%)
Wires 6,078,608 (8.97%) 0.01 (0.06%)
Other 5,973,803 (8.82%)
Combinational 3,979,345 (5.88%) 6.06 (37.97%)
Memory 32207390 (47.55%) 6.12 (38.30%)
Registers 3,348,677 (4.94%) 3.07 (19.25%)
Clock network 586323 (0.87%) 0.71 (4.48%)
Filler cell 27,611,165 (40.76%)

Table VI: Node layout characteristics.

eDRAM). The combinational logic and register only account
for 5.88% and 4.94% of the area respectively.

We used Synopsys PrimePower to estimate the power
consumption of the chip. The peak power consumption is
15.97 W (at a pessimistic 100% toggle rate), i.e., roughly 5-
10% of a state-of-the-art GPU card. The architecture block
breakdown shows that the tiles consume more than one third
(38.53%) of the power, and the four HT IPs consume about
one half (50.14%). The component breakdown shows that,
overall, memory cells (tile eDRAMs + central eDRAM)
account for 38.30% of the total power, combinational logic
and registers (mostly NFUs and HT protocol analyzers)
consume 37.97% and 19.25% respectively.

B. Performance

In Figure 10, we compare the performance of our ar-
chitecture against the GPU baseline described in Section
VI. Because of its large memory footprint (numbers of
neurons and synapses), CONV1 needs a 4-node system.
Even though CONV1 is a shared-kernel convolutional layer,
it contains 256 input feature maps, 384 output feature
maps and 11 × 11 kernels, so that the total number of
synapses is 256× 384× 11× 11 = 11, 894, 784, i.e., 22.69
MB (16-bit data). We must also store all layer inputs and
outputs, i.e., respectively 256 × 256 × 256 × 2 = 32MB,
246× 246× 384× 2 = 44.32MB (fewer output neurons due
to a border effect since the kernel is 11 × 11). So, overall,
99.01MB must be stored, which exceeds the node capacity
of 36MB. The convolutional layers with private kernels, i.e.,

1
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100

1000

1chip 4chips 16chips 64chips

Figure 10: Speedup w.r.t. the GPU baseline (inference). Note that
CONV1 and the full NN need a 4-node system, while CONV3* and
CONV4* even need a 36-node system.

CONV3* and CONV4*, need a 36-node system because
their size is respectively 1.29 GB and 1.32 GB. The full
NN contains 59.48M synapses, i.e., 118.96MB (16-bit data),
requiring at least 4 nodes.

On average, the 1-node, 4-node, 16-node and 64-node
architectures are respectively 21.38x, 79.81x, 216.72x, and
450.65x faster than the GPU baseline. 1 The first reason for
the higher performance is the large number of operators:
in each node, there are 9216 operators (mostly multipliers
and adders), compared to the 2496 MACs of the GPU.
The second reason is that the on-chip eDRAM provides the
necessary bandwidth and low-latency access to feed these
many operators.

Nevertheless, the scalability of the different layers varies a
lot. LRN layers scale the best (no inter-node communication)
with a speedup of up to 1340.77x for 64 nodes (LRN2),
CONV and POOL layers scale almost as well because they
only have inter-node communications on border elements,
e.g., CONV1 achieves a speedup of 2595.23x for 64 nodes,
but the actual speedup of LRN and POOL layers is lower
than CONV layers because they are less computationally
intensive. On the other hand, CLASS layers scale less well
because of the high amount of inter-node communication-
s, since each output neuron uses all input neurons from
different nodes, see Section V-E2, e.g., CLASS1 has a
speedup of 72.96x for 64 nodes. This is further illustrated
in the time breakdown of Figure 11. Note that each bar
is normalized to the total execution time, but due to the
overlap of computation and communication, the cumulated
bars can exceed 100%. This communication issue is mostly
due to our relatively simple 2D mesh topology where the
larger the number of nodes, the longer the time required
to send each block of inputs to all nodes. It is likely that
a more sophisticated multi-dimensional torus topology [4]
can largely reduce the total broadcast time as the number
of nodes increases, but we leave this optimization for future
work.

1Considering that the area of K20M GPU is about 550 mm2, and our
node is only 67.7 mm2, our design also has a high area-normalized speedup
with respect to GPU (21.38∗550/67.7 = 173.69x for 1-node and 450.65∗
550/(64 ∗ 67.7) = 57.20x for 64-node).

NBin

NBout

SB

IB

NFU

Figure 17: Layout of ShiDianNao (65 nm).

Benchmarks. We collected 10 CNNs from representative
visual recognition applications and used them as our bench-
marks (Table 2). Among all layers of all benchmarks, input
neurons consume at most 45 KB, and synapses consume at
most 118 KB, which do not exceed the SRAM capacities of
our design (Table 3).

10. Experimental Results

10.1. Layout Characteristics

We present in Tables 3 and 4 the parameters and layout char-
acteristics of the current ShiDianNao version (see Figure 17),
respectively. ShiDianNao has 8⇥ 8 (64) PEs and a 64 KB
NBin, a 64 KB NBout, a 128 KB SB, and a 32 KB IB. The
overall SRAM capacity of ShiDianNao is 288 KB (11.1⇥
larger than that of DianNao), in order to simultaneously store
all data and instructions for a practical CNN. Yet, the total
area of ShiDianNao is only 3.52⇥ larger than that of DianNao
(4.86 mm2 vs. 1.38 mm2).

10.2. Performance

We compare ShiDianNao against the CPU, the GPU, and Di-
anNao on all benchmarks listed in Section 9. The results are
shown in Figure 18. Unsurprisingly, ShiDianNao significantly
outperforms the general purpose architectures and is, on aver-
age, 46.38 ⇥ faster than the CPU and 28.94⇥ faster than the
GPU. In particular, the GPU cannot take full advantage of its
high computational power because the small computational
kernels of the visual recognition tasks listed in Table 1 map
poorly on its 2,496 hardware threads.

More interestingly, ShiDianNao also outperforms our accel-
erator baseline on 9 out of 10 benchmarks (1.87⇥ faster on
average on all 10 benchmarks). There are two main reasons for
that: Firstly, compared to DianNao, ShiDianNao eliminates
off-chip memory accesses during execution, thanks to a suffi-
ciently large SRAM capacity and a correspondingly slightly
higher cost. Secondly, ShiDianNao efficiently exploits the lo-
cality of 2D feature maps with its dedicated SRAM controllers
and its inter-PE data reuse mechanism; DianNao, on the other
hand, cannot make good use of that locality.

ShiDianNao performs slightly worse than the accelerator
baseline on benchmark Simple Conv. The issue is that ShiD-
ianNao works on a single output feature map at a time and
each PE works on a single output neuron of the feature map.

Table 3: Parameter settings of ShiDianNao and DianNao.

ShiDianNao DianNao

Data width 16-bit 16-bit
# multipliers 64 64
NBin SRAM size 64 KB 1 KB
NBout SRAM size 64 KB 1 KB
SB SRAM size 128 KB 16 KB
Inst. SRAM size 32 KB 8 KB

Table 4: Hardware characteristics of ShiDianNao at 1GHz,
where power and energy are averaged over 10 benchmarks.

Accelerator Area (mm2) Power (mW ) Energy (nJ)

Total 4.86 (100%) 320.10 (100%) 6048.70 (100%)
NFU 0.66 (13.58%) 268.82 (83.98%) 5281.09 (87.29%)
NBin 1.12 (23.05%) 35.53 (11.10%) 475.01 (7.85%)
NBout 1.12 (23.05%) 6.60 (2.06%) 86.61 (1.43%)
SB 1.65 (33.95%) 6.77 (2.11%) 94.08 (1.56%)
IB 0.31 (6.38%) 2.38 (0.74%) 35.84 (0.59%)

Therefore, when most of an application consists of uncom-
monly small output feature maps with fewer output neurons
than implemented PEs (e.g., 5⇥ 5 in the C2 layer of bench-
mark Simple Conv for 8⇥ 8 PEs in the current accelerator
design), some PEs will be idle. Although we played with the
idea of alleviating this issue by adding complicated control
logic to each PE and allowing different PEs to simultaneously
work on different feature maps, we ultimately decided against
this option as it appeared a poor trade-off with a detrimental
impact on the programming model.

Concerning the ability of ShiDianNao to process in real
time a stream of frames from a sensor, the longest time to
process a 640x480 video frame is for benchmark ConvNN
which requires 0.047 ms to process a 64⇥ 36-pixel region.
Since each frame contains d(640 � 64)/16 + 1e ⇥ d(480 �
36)/16+1e= 1073 such regions (overlapped by 16 pixels),
a frame takes a little more than 50 ms to process, resulting
in a speed of 20 frames per second for the most demanding
benchmark. Since typical commercial sensors can stream
data at a desired rate and since streaming speed can thus be
matched to the processing rate, the partial frame buffer must
store only the parts of the image reused across overlapping
regions. This is of the order of a few tens of pixel rows and fits
well the 256 KB of commercial image processors. Although
apparently low, the 640⇥480 resolution is in line with the
fact that usually images are resized in certain range before
processing [47, 34, 23, 16].

10.3. Energy

In Figure 19, we report the energy consumed by GPU, Dian-
Nao and ShiDianNao, inclusive of main memory accesses to
obtain the input data. Even if ShiDianNao is not meant to
access DRAM, we have conservatively included main mem-
ory accesses for the sake of a fair comparison. ShiDianNao
is on average 4688.13⇥ and 63.48⇥ more energy efficient
than GPU and DianNao, respectively. We also evaluate an
ideal version of DianNao (DianNao-FreeMem, see Figure 19),
where we assume that main memory accesses incur no en-
ergy cost. Interestingly, we observe that ShiDianNao is still
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move only neurons and to keep synapses in a fixed storage
location. This serves two purposes.
First, the architecture is targeted for both inference and
training. In inference, the neurons of the previous layer
are the inputs of the computation; in training, the neurons
are forward-propagated (so neurons of the previous layer
are the inputs) and then backward-propagated (so neurons
of the next layer are now the inputs). As a result, de-
pending on how data (neurons and synapses) are allocated
to nodes, they need to be moved between the forward
and backward phases. Since there are many more synapses
than neurons (e.g., O(N2) vs. O(N) for classifier layers,
K × K × Nif × Nof × Nx × Ny vs. Nif × Nx × Ny for
convolutional layers with private kernels, see Section II), it
is only logical to move neuron outputs instead of synapses.
Second, having all synapses (most of the computation input-
s) next to computational operators provides low-energy/low-
latency data (synapses) transfers and high internal band-
width.

As shown in Table I, layer sizes can range from less than
1MB to about 1GB, most of them ranging in the tens of MB.
While SRAMs are appropriate for caching purposes, they
are not dense enough for such large-scale storage. However,
eDRAMs are known to have a higher storage density. For
instance, a 10MB SRAM memory requires 20.73mm2 at
28nm [36], while an eDRAM memory of the same size and
at the same technology node requires 7.27mm2 [50], i.e., a
2.85x higher storage density.

Moreover, providing sufficient eDRAM capacity to hold
all synapses on the combined eDRAM of all chips will
save on off-chip DRAM accesses, which are particularly
costly energy-wise. For instance, a read access to a 256-
bit wide eDRAM array at 28nm consumes 0.0192nJ (50µA,
0.9V, 606 MHz) [25], while a 256-bit read access to a
Micron DDR3 DRAM consumes 6.18nJ at 28nm [40], i.e.,
an energy ratio of 321x. The ratio is largely due to the
memory controller, the DDR3 physical-level interface, on-
chip bus access, page activation, etc.

If the NFU is no longer limited by the memory bandwidth,
it is possible to scale up its size in order to process more
output neurons (No) and more inputs per output neuron
(Ni) simultaneously, and thus, to improve the overall node
throughput. For instance, to scale up by 16x the number of
operations performed every cycle compared to the acceler-
ator mentioned in Section IV, we need to have Ni = 64
(instead of 16) and No = 64 (instead of 16). In order to
achieve maximal throughput, we must fetch Ni × No 16-
bit values from the eDRAM to the NFU every cycle, i.e.,
64× 64× 16 = 65536 bits in this case.

However eDRAM has three well-known drawbacks: high-
er latency than SRAM, destructive reads and periodic refresh
[38], as in traditional DRAMs. In order to compensate for
the eDRAM drawbacks and still feed the NFU every cycle,
we split the eDRAM into four banks (65536-bit wide in the
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Figure 4: Simplified floorplan with a single central NFU showing
wire congestion.
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Figure 5: Tile-based organization of a node (left) and tile archi-
tecture (right). A node contains 16 tiles, two central eDRAM banks
and fat tree interconnect; a tile has an NFU, four eDRAM banks
and input/output interfaces to/from the central eDRAM banks.

above example), and we interleave the synapses rows among
the four banks.

We placed and routed this design at 28nm (ST technology,
LP), and we obtained the floorplan of Figure 4. The NFU
footprint is very small at 0.78mm2 (0.88mm×0.88mm), but
the process imposes an average spacing of 0.2µm between
wires, and provides only 4 horizontal metal layers. As a
result, the 65536 wires connecting the NFU to the eDRAM
require a width of 65536×0.2

4 = 3.2768mm, see Figure 4.
Consequently, wires occupy 4× 3.2768× 3.2768− 0.88×
0.88 = 42.18mm2, which is almost equal to the combined
area of all eDRAM banks, all NFUs and the I/O.

2) High Internal Bandwidth: In order to avoid this con-
gestion, we adopt a tile-based design, as shown in Figure 5.
The output neurons are spread out in the different tiles, so
that each NFU can simultaneously process 16 input neurons

input 
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!
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!
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Stage2 Stage3

output
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updated 
Synapses
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Figure 6: The different (parallel) operators of an NFU: multipliers,
adders, max, transfer function.

- DaDiannao (Bigger 
Computer) uses multi-chip 
and EDRAM to fit larger 
models. Each chip is 
68mm^2 fitting 12 Million 
parameters, consumes 16W  

- ShiDiannao (Vision 
Computer) It can fits small 
model (up-to 64K 
parameters) on-chip. It maps 
the computation on 2D PE 
array. The chip is 4.86 mm^2 
and consumes 320 mW 

Chen et al. Diannao: A small-footprint high-throughput accelerator for ubiquitous machine-learning, ASPLOS 2014 
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Dataflow Comparison: CONV Layers

RS uses 1.4× – 2.5× lower energy than other dataflows
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[Chen et al., ISCA 2016]
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EIE Architecture

EIE: Efficient Inference Engine on Compressed Deep Neural Network
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Abstract—State-of-the-art deep neural networks (DNNs)
have hundreds of millions of connections and are both compu-
tationally and memory intensive, making them difficult to de-
ploy on embedded systems with limited hardware resources and
power budgets. While custom hardware helps the computation,
fetching weights from DRAM is two orders of magnitude more
expensive than ALU operations, and dominates the required
power.

Previously proposed ‘Deep Compression’ makes it possible
to fit large DNNs (AlexNet and VGGNet) fully in on-chip
SRAM. This compression is achieved by pruning the redundant
connections and having multiple connections share the same
weight. We propose an energy efficient inference engine (EIE)
that performs inference on this compressed network model and
accelerates the resulting sparse matrix-vector multiplication
with weight sharing. Going from DRAM to SRAM gives EIE
120⇥ energy saving; Exploiting sparsity saves 10⇥; Weight
sharing gives 8⇥; Skipping zero activations from ReLU saves
another 3⇥. Evaluated on nine DNN benchmarks, EIE is
189⇥ and 13⇥ faster when compared to CPU and GPU
implementations of the same DNN without compression. EIE
has a processing power of 102 GOPS/s working directly on
a compressed network, corresponding to 3 TOPS/s on an
uncompressed network, and processes FC layers of AlexNet at
1.88⇥104 frames/sec with a power dissipation of only 600mW.
It is 24,000⇥ and 3,400⇥ more energy efficient than a CPU
and GPU respectively. Compared with DaDianNao, EIE has
2.9⇥, 19⇥ and 3⇥ better throughput, energy efficiency and
area efficiency.

Keywords-Deep Learning; Model Compression; Hardware
Acceleration; Algorithm-Hardware co-Design; ASIC;

I. INTRODUCTION

Neural networks have become ubiquitous in applications
including computer vision [1]–[3], speech recognition [4],
and natural language processing [4]. In 1998, Lecun et
al. classified handwritten digits with less than 1M parame-
ters [5], while in 2012, Krizhevsky et al. won the ImageNet
competition with 60M parameters [1]. Deepface classified
human faces with 120M parameters [6]. Neural Talk [7]
automatically converts image to natural language with 130M
CNN parameters and 100M RNN parameters. Coates et
al. scaled up a network to 10 billion parameters on HPC
systems [8].

Large DNN models are very powerful but consume large
amounts of energy because the model must be stored in
external DRAM, and fetched every time for each image,
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Figure 1. Efficient inference engine that works on the compressed deep
neural network model for machine learning applications.

word, or speech sample. For embedded mobile applications,
these resource demands become prohibitive. Table I shows
the energy cost of basic arithmetic and memory operations
in a 45nm CMOS process [9]. It shows that the total energy
is dominated by the required memory access if there is
no data reuse. The energy cost per fetch ranges from 5pJ
for 32b coefficients in on-chip SRAM to 640pJ for 32b
coefficients in off-chip LPDDR2 DRAM. Large networks do
not fit in on-chip storage and hence require the more costly
DRAM accesses. Running a 1G connection neural network,
for example, at 20Hz would require (20Hz)(1G)(640pJ) =
12.8W just for DRAM accesses, which is well beyond the
power envelope of a typical mobile device.

Previous work has used specialized hardware to accelerate
DNNs [10]–[12]. However, these efforts focus on acceler-
ating dense, uncompressed models - limiting their utility
to small models or to cases where the high energy cost
of external DRAM access can be tolerated. Without model
compression, it is only possible to fit very small neural
networks, such as Lenet-5, in on-chip SRAM [12].

Efficient implementation of convolutional layers in CNN
has been intensively studied, as its data reuse and manipu-
lation is quite suitable for customized hardware [10]–[15].
However, it has been found that fully-connected (FC) layers,
widely used in RNN and LSTMs, are bandwidth limited
on large networks [14]. Unlike CONV layers, there is no
parameter reuse in FC layers. Data batching has become
an efficient solution when training networks on CPUs or
GPUs, however, it is unsuitable for real-time applications
with latency requirements.

Network compression via pruning and weight sharing
[16] makes it possible to fit modern networks such as
AlexNet (60M parameters, 240MB), and VGG-16 (130M
parameters, 520MB) in on-chip SRAM. Processing these
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1Cornell University, 2UCLA, 3UCSD
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Yaman Umuroglu1,2, Nicholas J. Fraser1,3, Giulio Gambardella1, Michaela Blott1, Philip 
Leong3, Magnus Jahre2, Kees Vissers1 
1Xilinx Research Labs, 2Norwegian University of Science and Technology, 3University of 
Sydney
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Batch Normalization

Ioffe et al. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

vector, and X be the set of these inputs over the training
data set. The normalization can then be written as a trans-
formation

x̂ = Norm(x,X )

which depends not only on the given training example x
but on all examples X – each of which depends on Θ if
x is generated by another layer. For backpropagation, we
would need to compute the Jacobians

∂Norm(x,X )

∂x
and

∂Norm(x,X )

∂X
;

ignoring the latter term would lead to the explosion de-
scribed above. Within this framework, whitening the layer
inputs is expensive, as it requires computing the covari-
ance matrix Cov[x] = Ex∈X [xxT ] − E[x]E[x]T and its
inverse square root, to produce the whitened activations
Cov[x]−1/2(x − E[x]), as well as the derivatives of these
transforms for backpropagation. This motivates us to seek
an alternative that performs input normalization in a way
that is differentiable and does not require the analysis of
the entire training set after every parameter update.

Some of the previous approaches (e.g.
(Lyu & Simoncelli, 2008)) use statistics computed
over a single training example, or, in the case of image
networks, over different feature maps at a given location.
However, this changes the representation ability of a
network by discarding the absolute scale of activations.
We want to a preserve the information in the network, by
normalizing the activations in a training example relative
to the statistics of the entire training data.

3 Normalization via Mini-Batch
Statistics

Since the full whitening of each layer’s inputs is costly
and not everywhere differentiable, we make two neces-
sary simplifications. The first is that instead of whitening
the features in layer inputs and outputs jointly, we will
normalize each scalar feature independently, by making it
have the mean of zero and the variance of 1. For a layer
with d-dimensional input x = (x(1) . . . x(d)), we will nor-
malize each dimension

x̂(k) =
x(k) − E[x(k)]√

Var[x(k)]

where the expectation and variance are computed over the
training data set. As shown in (LeCun et al., 1998b), such
normalization speeds up convergence, even when the fea-
tures are not decorrelated.

Note that simply normalizing each input of a layer may
change what the layer can represent. For instance, nor-
malizing the inputs of a sigmoid would constrain them to
the linear regime of the nonlinearity. To address this, we
make sure that the transformation inserted in the network
can represent the identity transform. To accomplish this,

we introduce, for each activation x(k), a pair of parameters
γ(k),β(k), which scale and shift the normalized value:

y(k) = γ(k)x̂(k) + β(k).

These parameters are learned along with the original
model parameters, and restore the representation power
of the network. Indeed, by setting γ(k) =

√
Var[x(k)] and

β(k) = E[x(k)], we could recover the original activations,
if that were the optimal thing to do.

In the batch setting where each training step is based on
the entire training set, we would use the whole set to nor-
malize activations. However, this is impractical when us-
ing stochastic optimization. Therefore, we make the sec-
ond simplification: since we use mini-batches in stochas-
tic gradient training, each mini-batch produces estimates
of the mean and variance of each activation. This way, the
statistics used for normalization can fully participate in
the gradient backpropagation. Note that the use of mini-
batches is enabled by computation of per-dimension vari-
ances rather than joint covariances; in the joint case, reg-
ularization would be required since the mini-batch size is
likely to be smaller than the number of activations being
whitened, resulting in singular covariance matrices.

Consider a mini-batch B of size m. Since the normal-
ization is applied to each activation independently, let us
focus on a particular activation x(k) and omit k for clarity.
We have m values of this activation in the mini-batch,

B = {x1...m}.

Let the normalized values be x̂1...m, and their linear trans-
formations be y1...m. We refer to the transform

BNγ,β : x1...m → y1...m

as the Batch Normalizing Transform. We present the BN
Transform in Algorithm 1. In the algorithm, ϵ is a constant
added to the mini-batch variance for numerical stability.

Input: Values of x over a mini-batch: B = {x1...m};
Parameters to be learned: γ, β

Output: {yi = BNγ,β(xi)}

µB ←
1

m

m∑

i=1

xi // mini-batch mean

σ2
B ←

1

m

m∑

i=1

(xi − µB)
2 // mini-batch variance

x̂i ←
xi − µB√
σ2
B
+ ϵ

// normalize

yi ← γx̂i + β ≡ BNγ,β(xi) // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to
activation x over a mini-batch.

The BN transform can be added to a network to manip-
ulate any activation. In the notation y = BNγ,β(x), we

3
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Batch Normalization Helps Convergence
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BN−x5−Sigmoid
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Figure 2: Single crop validation accuracy of Inception
and its batch-normalized variants, vs. the number of
training steps.

Model Steps to 72.2% Max accuracy
Inception 31.0 · 106 72.2%

BN-Baseline 13.3 · 106 72.7%
BN-x5 2.1 · 106 73.0%
BN-x30 2.7 · 106 74.8%

BN-x5-Sigmoid 69.8%

Figure 3: For Inception and the batch-normalized
variants, the number of training steps required to
reach the maximum accuracy of Inception (72.2%),
and the maximum accuracy achieved by the net-
work.

4.2.2 Single-Network Classification

We evaluated the following networks, all trained on the
LSVRC2012 training data, and tested on the validation
data:

Inception: the network described at the beginning of
Section 4.2, trained with the initial learning rate of 0.0015.

BN-Baseline: Same as Inception with Batch Normal-
ization before each nonlinearity.

BN-x5: Inception with Batch Normalization and the
modifications in Sec. 4.2.1. The initial learning rate was
increased by a factor of 5, to 0.0075. The same learning
rate increase with original Inception caused the model pa-
rameters to reach machine infinity.

BN-x30: Like BN-x5, but with the initial learning rate
0.045 (30 times that of Inception).

BN-x5-Sigmoid: Like BN-x5, but with sigmoid non-
linearity g(t) = 1

1+exp(−x) instead of ReLU. We also at-
tempted to train the original Inception with sigmoid, but
the model remained at the accuracy equivalent to chance.

In Figure 2, we show the validation accuracy of the
networks, as a function of the number of training steps.
Inception reached the accuracy of 72.2% after 31 · 106
training steps. The Figure 3 shows, for each network,
the number of training steps required to reach the same
72.2% accuracy, as well as the maximum validation accu-
racy reached by the network and the number of steps to
reach it.

By only using Batch Normalization (BN-Baseline), we
match the accuracy of Inception in less than half the num-
ber of training steps. By applying the modifications in
Sec. 4.2.1, we significantly increase the training speed of
the network. BN-x5 needs 14 times fewer steps than In-
ception to reach the 72.2% accuracy. Interestingly, in-
creasing the learning rate further (BN-x30) causes the
model to train somewhat slower initially, but allows it to
reach a higher final accuracy. It reaches 74.8% after 6·106
steps, i.e. 5 times fewer steps than required by Inception
to reach 72.2%.

We also verified that the reduction in internal covari-
ate shift allows deep networks with Batch Normalization

to be trained when sigmoid is used as the nonlinearity,
despite the well-known difficulty of training such net-
works. Indeed, BN-x5-Sigmoid achieves the accuracy of
69.8%. Without Batch Normalization, Inception with sig-
moid never achieves better than 1/1000 accuracy.

4.2.3 Ensemble Classification

The current reported best results on the ImageNet Large
Scale Visual Recognition Competition are reached by the
Deep Image ensemble of traditional models (Wu et al.,
2015) and the ensemble model of (He et al., 2015). The
latter reports the top-5 error of 4.94%, as evaluated by the
ILSVRC server. Here we report a top-5 validation error of
4.9%, and test error of 4.82% (according to the ILSVRC
server). This improves upon the previous best result, and
exceeds the estimated accuracy of human raters according
to (Russakovsky et al., 2014).

For our ensemble, we used 6 networks. Each was based
on BN-x30, modified via some of the following: increased
initial weights in the convolutional layers; using Dropout
(with the Dropout probability of 5% or 10%, vs. 40%
for the original Inception); and using non-convolutional,
per-activation Batch Normalization with last hidden lay-
ers of the model. Each network achieved its maximum
accuracy after about 6 · 106 training steps. The ensemble
prediction was based on the arithmetic average of class
probabilities predicted by the constituent networks. The
details of ensemble and multicrop inference are similar to
(Szegedy et al., 2014).

We demonstrate in Fig. 4 that batch normalization al-
lows us to set new state-of-the-art by a healthy margin on
the ImageNet classification challenge benchmarks.

5 Conclusion
We have presented a novel mechanism for dramatically
accelerating the training of deep networks. It is based on
the premise that covariate shift, which is known to com-
plicate the training of machine learning systems, also ap-
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Tips Using Batch Normalization

• Increase learning rate. 
• Remove Dropout 
• Reduce the regularization. 
• Accelerate the learning rate decay. 
• Remove Local Response Normalization 
• Shuffle training examples 
• Reduce the photometric distortions. 

Ioffe et al. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
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Softened outputs reveal the dark knowledge

Hinton et al. Dark knowledge / Distilling the Knowledge in a Neural Network



Softened outputs reveal the dark knowledge

•Method: Divide score by a “temperature” to get a much softer 
distribution  

•Result: Start with a trained model that classifies 58.9% of the 
test frames correctly. The new model converges to 57.0% 
correct even when it is only trained on 3% of the data

Hinton et al. Dark knowledge / Distilling the Knowledge in a Neural Network
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DSD produces same model architecture but can find better optimization solution, 
arrives at better local minima, and achieves higher prediction accuracy across a wide 
range of deep neural networks on CNNs / RNNs / LSTMs.

Under review as a conference paper at ICLR 2017

Dense

Pruning

Sparsity Constraint

Sparse

Increase Model Capacity

 Re-Dense

Dense

Figure 1: Dense-Sparse-Dense Training Flow. The sparse training regularizes the model, and the final
dense training restores the pruned weights (red), increasing the model capacity without overfitting.

Algorithm 1: Workflow of DSD training

Initialization: W (0)
with W

(0) ⇠ N(0,⌃)
Output :W (t).
———————————————– Initial Dense Phase ———————————————–
while not converged do

W̃

(t) = W

(t�1) � ⌘

(t)rf(W (t�1);x(t�1));
t = t+ 1;

end
————————————————— Sparse Phase —————————————————-
// initialize the mask by sorting and keeping the Top-k weights.

S = sort(|W (t�1)|); � = S

ki ; Mask = 1(|W (t�1)| > �);
while not converged do

W̃

(t) = W

(t�1) � ⌘

(t)rf(W (t�1);x(t�1));
W̃

(t) = W

(t) ·Mask;
t = t+ 1;

end
————————————————- Final Dense Phase ————————————————–

while not converged do
W̃

(t) = W

(t�1) � ⌘

(t)rf(W (t�1);x(t�1));
t = t+ 1;

end
goto Sparse Phase for iterative DSD;

In contrast, simply reducing the model capacity would lead to the other extreme, causing a machine
learning system to miss the relevant relationships between features and target outputs, leading to
under-fitting and a high bias. Bias and variance are hard to optimize at the same time.

Model compression methods ( Han et al. (2016; 2015); Guo et al. (2016)) can reduce the model
size by 35x-49x or more without hurting prediction accuracy. Compression without losing accuracy
means there’s significant redundancy in the trained model. Since the compressed model can achieve
the same accuracy as the redundant uncompressed model, one hypothesis is that the model of the
original size should have the capacity to achieve higher accuracy. This shows the inadequacy of
current training methods since it fails to find the existing better solutions.

In order to find the expected higher accuracy, we propose a dense-sparse-dense training flow (DSD), a
novel training strategy that starts from a dense model from conventional training, then regularizes the
model with sparsity-constrained optimization, and finally increases the model capacity by restoring
and retraining the pruned weights. At testing time, the final model produced by DSD still has the
same architecture and dimension as the original dense model, and DSD training doesn’t incur any
inference overhead. We experimented DSD training on 7 mainstream CNN / RNN / LSTMs and
found consistent performance gains over its comparable counterpart for image classification, image
captioning and speech recognition.

2 DSD TRAINING FLOW

Our DSD training employs a three-step process: dense, sparse, dense. Each step is illustrated in
Figure 1 and Algorithm 1. The progression of weight distribution is plotted in Figure 2.

2

DSD: Dense Sparse Dense Training

Han et al. “DSD: Dense-Sparse-Dense Training for Deep Neural Networks”, ICLR 2017



DSD: Intuition

learn the trunk first then learn the leaves

Han et al. “DSD: Dense-Sparse-Dense Training for Deep Neural Networks”, ICLR 2017
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Table 1: Overview of the neural networks, data sets and performance improvements from DSD.

Neural Network Domain Dataset Type Baseline DSD Abs. Imp. Rel. Imp.
GoogLeNet Vision ImageNet CNN 31.1%1 30.0% 1.1% 3.6%

VGG-16 Vision ImageNet CNN 31.5%1 27.2% 4.3% 13.7%
ResNet-18 Vision ImageNet CNN 30.4%1 29.3% 1.1% 3.7%
ResNet-50 Vision ImageNet CNN 24.0%1 23.2% 0.9% 3.5%
NeuralTalk Caption Flickr-8K LSTM 16.82 18.5 1.7 10.1%

DeepSpeech Speech WSJ’93 RNN 33.6%3 31.6% 2.0% 5.8%
DeepSpeech-2 Speech WSJ’93 RNN 14.5% 3 13.4% 1.1% 7.4%

1 Top-1 error. VGG/GoogLeNet baselines from Caffe model zoo, ResNet from Facebook.
2 BLEU score baseline from Neural Talk model zoo, higher the better.
3 Word error rate: DeepSpeech2 is trained with a portion of Baidu internal dataset with only max

decoding to show the effect of DNN improvement.

3 RELATED WORK

Dropout and DropConnect: DSD, Dropout ( Srivastava et al. (2014)) and DropConnnect ( Wan
et al. (2013)) can all regularize neural networks and prevent over-fitting. The difference is that,
Dropout and DropConnect use a random sparsity pattern at each SGD iteration, while DSD training
learns with a deterministic data driven sparsity pattern throughout sparse training. Our experiments
on VGG16, GoogLeNet and NeuralTalk show that DSD training can work together with Dropout.

Distillation: Model distillation ( Hinton et al. (2015)) is method that can transfer the knowledge
from the cumbersome model to a small model that is more efficient for deployment. This is another
method that allows for performance improvements in neural networks without architectural changes.
This also shows the inadequacy of current training methods to get good accuracy with small model.

Model Compression: Both model compression ( Han et al. (2016; 2015)) and DSD training use
network pruning ( LeCun et al. (1990); Hassibi et al. (1993)). The difference is that the focus of
DSD training goes beyond maintaining accuracy with aggressively pruned networks. DSD is able to
further improve the accuracy by considerable margins.

Similar to other model compression works ( Guo et al. (2016)), DSD uses binary sparsity mask
in pruning. However DSD training does not need an aggressively sparse mask or take additional
computation cost to update and possibly improve the binary sparsity mask in each epoch. Also unlike
model compression which aggressively prunes the network to achieve high compression rate, a simply
fixed modestly pruned network can work well in the S step of DSD.

Sparsity regularization and Compressed Sensing: Truncation-based sparse network has been
theoretically analyzed for learning a broad range of statistical models in high dimensions ( Langford
et al. (2009); Yuan & Zhang (2013); Wang et al. (2014)). Also sparsity regularized optimization
is heavily applied in methods such as Compressed Sensing ( Candes & Romberg (2007)) to find
optimal solutions of the inverse problems in highly under-determined systems based on the sparsity
assumption. These analysis shows that truncation-based procedure has provable advantage in statisti-
cal accuracy in comparison with their non-truncated counterparts, especially for high dimensions.
The conclusions of these works align well with our experimental observations.

4 EXPERIMENTS

We applied DSD training to different kinds of neural networks in different domains. We found that
DSD training improved the accuracy for ALL these networks compared to the baseline that were not
trained with DSD. The neural networks are chosen from CNN, RNN and LSTMs; the datasets are
chosen from image classification, speech recognition, and caption generation. Among other networks
trained for ImageNet, we focus on GoogLeNet, VGG, and ResNet, which are widely used in research
and production. An overview of the networks, dataset and accuracy results are shown in Table 1. For
the convolutional networks, we do not prune the first layer during the sparse phase, since it has only 3
channels and is very sensitive to pruning. The sparsity is the same for all the other layers, including
convolutional and fully-connected layers. We do not change any other training hyper-parameters and
the initial learning rate at each stage is decayed the same as conventional training. The epochs are
decided by when the loss converges.

4
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Table 1: Overview of the neural networks, data sets and performance improvements from DSD.

Neural Network Domain Dataset Type Baseline DSD Abs. Imp. Rel. Imp.
GoogLeNet Vision ImageNet CNN 31.1%1 30.0% 1.1% 3.6%

VGG-16 Vision ImageNet CNN 31.5%1 27.2% 4.3% 13.7%
ResNet-18 Vision ImageNet CNN 30.4%1 29.3% 1.1% 3.7%
ResNet-50 Vision ImageNet CNN 24.0%1 23.2% 0.9% 3.5%
NeuralTalk Caption Flickr-8K LSTM 16.82 18.5 1.7 10.1%

DeepSpeech Speech WSJ’93 RNN 33.6%3 31.6% 2.0% 5.8%
DeepSpeech-2 Speech WSJ’93 RNN 14.5% 3 13.4% 1.1% 7.4%

1 Top-1 error. VGG/GoogLeNet baselines from Caffe model zoo, ResNet from Facebook.
2 BLEU score baseline from Neural Talk model zoo, higher the better.
3 Word error rate: DeepSpeech2 is trained with a portion of Baidu internal dataset with only max

decoding to show the effect of DNN improvement.

3 RELATED WORK

Dropout and DropConnect: DSD, Dropout ( Srivastava et al. (2014)) and DropConnnect ( Wan
et al. (2013)) can all regularize neural networks and prevent over-fitting. The difference is that,
Dropout and DropConnect use a random sparsity pattern at each SGD iteration, while DSD training
learns with a deterministic data driven sparsity pattern throughout sparse training. Our experiments
on VGG16, GoogLeNet and NeuralTalk show that DSD training can work together with Dropout.

Distillation: Model distillation ( Hinton et al. (2015)) is method that can transfer the knowledge
from the cumbersome model to a small model that is more efficient for deployment. This is another
method that allows for performance improvements in neural networks without architectural changes.
This also shows the inadequacy of current training methods to get good accuracy with small model.

Model Compression: Both model compression ( Han et al. (2016; 2015)) and DSD training use
network pruning ( LeCun et al. (1990); Hassibi et al. (1993)). The difference is that the focus of
DSD training goes beyond maintaining accuracy with aggressively pruned networks. DSD is able to
further improve the accuracy by considerable margins.

Similar to other model compression works ( Guo et al. (2016)), DSD uses binary sparsity mask
in pruning. However DSD training does not need an aggressively sparse mask or take additional
computation cost to update and possibly improve the binary sparsity mask in each epoch. Also unlike
model compression which aggressively prunes the network to achieve high compression rate, a simply
fixed modestly pruned network can work well in the S step of DSD.

Sparsity regularization and Compressed Sensing: Truncation-based sparse network has been
theoretically analyzed for learning a broad range of statistical models in high dimensions ( Langford
et al. (2009); Yuan & Zhang (2013); Wang et al. (2014)). Also sparsity regularized optimization
is heavily applied in methods such as Compressed Sensing ( Candes & Romberg (2007)) to find
optimal solutions of the inverse problems in highly under-determined systems based on the sparsity
assumption. These analysis shows that truncation-based procedure has provable advantage in statisti-
cal accuracy in comparison with their non-truncated counterparts, especially for high dimensions.
The conclusions of these works align well with our experimental observations.

4 EXPERIMENTS

We applied DSD training to different kinds of neural networks in different domains. We found that
DSD training improved the accuracy for ALL these networks compared to the baseline that were not
trained with DSD. The neural networks are chosen from CNN, RNN and LSTMs; the datasets are
chosen from image classification, speech recognition, and caption generation. Among other networks
trained for ImageNet, we focus on GoogLeNet, VGG, and ResNet, which are widely used in research
and production. An overview of the networks, dataset and accuracy results are shown in Table 1. For
the convolutional networks, we do not prune the first layer during the sparse phase, since it has only 3
channels and is very sensitive to pruning. The sparsity is the same for all the other layers, including
convolutional and fully-connected layers. We do not change any other training hyper-parameters and
the initial learning rate at each stage is decayed the same as conventional training. The epochs are
decided by when the loss converges.
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Table 1: Overview of the neural networks, data sets and performance improvements from DSD.

Neural Network Domain Dataset Type Baseline DSD Abs. Imp. Rel. Imp.
GoogLeNet Vision ImageNet CNN 31.1%1 30.0% 1.1% 3.6%

VGG-16 Vision ImageNet CNN 31.5%1 27.2% 4.3% 13.7%
ResNet-18 Vision ImageNet CNN 30.4%1 29.3% 1.1% 3.7%
ResNet-50 Vision ImageNet CNN 24.0%1 23.2% 0.9% 3.5%
NeuralTalk Caption Flickr-8K LSTM 16.82 18.5 1.7 10.1%

DeepSpeech Speech WSJ’93 RNN 33.6%3 31.6% 2.0% 5.8%
DeepSpeech-2 Speech WSJ’93 RNN 14.5% 3 13.4% 1.1% 7.4%

1 Top-1 error. VGG/GoogLeNet baselines from Caffe model zoo, ResNet from Facebook.
2 BLEU score baseline from Neural Talk model zoo, higher the better.
3 Word error rate: DeepSpeech2 is trained with a portion of Baidu internal dataset with only max

decoding to show the effect of DNN improvement.

3 RELATED WORK

Dropout and DropConnect: DSD, Dropout ( Srivastava et al. (2014)) and DropConnnect ( Wan
et al. (2013)) can all regularize neural networks and prevent over-fitting. The difference is that,
Dropout and DropConnect use a random sparsity pattern at each SGD iteration, while DSD training
learns with a deterministic data driven sparsity pattern throughout sparse training. Our experiments
on VGG16, GoogLeNet and NeuralTalk show that DSD training can work together with Dropout.

Distillation: Model distillation ( Hinton et al. (2015)) is method that can transfer the knowledge
from the cumbersome model to a small model that is more efficient for deployment. This is another
method that allows for performance improvements in neural networks without architectural changes.
This also shows the inadequacy of current training methods to get good accuracy with small model.

Model Compression: Both model compression ( Han et al. (2016; 2015)) and DSD training use
network pruning ( LeCun et al. (1990); Hassibi et al. (1993)). The difference is that the focus of
DSD training goes beyond maintaining accuracy with aggressively pruned networks. DSD is able to
further improve the accuracy by considerable margins.

Similar to other model compression works ( Guo et al. (2016)), DSD uses binary sparsity mask
in pruning. However DSD training does not need an aggressively sparse mask or take additional
computation cost to update and possibly improve the binary sparsity mask in each epoch. Also unlike
model compression which aggressively prunes the network to achieve high compression rate, a simply
fixed modestly pruned network can work well in the S step of DSD.

Sparsity regularization and Compressed Sensing: Truncation-based sparse network has been
theoretically analyzed for learning a broad range of statistical models in high dimensions ( Langford
et al. (2009); Yuan & Zhang (2013); Wang et al. (2014)). Also sparsity regularized optimization
is heavily applied in methods such as Compressed Sensing ( Candes & Romberg (2007)) to find
optimal solutions of the inverse problems in highly under-determined systems based on the sparsity
assumption. These analysis shows that truncation-based procedure has provable advantage in statisti-
cal accuracy in comparison with their non-truncated counterparts, especially for high dimensions.
The conclusions of these works align well with our experimental observations.

4 EXPERIMENTS

We applied DSD training to different kinds of neural networks in different domains. We found that
DSD training improved the accuracy for ALL these networks compared to the baseline that were not
trained with DSD. The neural networks are chosen from CNN, RNN and LSTMs; the datasets are
chosen from image classification, speech recognition, and caption generation. Among other networks
trained for ImageNet, we focus on GoogLeNet, VGG, and ResNet, which are widely used in research
and production. An overview of the networks, dataset and accuracy results are shown in Table 1. For
the convolutional networks, we do not prune the first layer during the sparse phase, since it has only 3
channels and is very sensitive to pruning. The sparsity is the same for all the other layers, including
convolutional and fully-connected layers. We do not change any other training hyper-parameters and
the initial learning rate at each stage is decayed the same as conventional training. The epochs are
decided by when the loss converges.

4
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Baseline: a man and 
a woman are sitting 
on a bench. 

Sparse: a man is 
sitting on a bench 
with his hands in the 
air. 
DSD: a man is sitting 
on a bench with his 
arms folded.

Baseline:  two 
dogs are playing 
together in a field. 

Sparse:  two dogs 
are playing in a 
field. 

DSD: two dogs are 
p l a y i n g i n t h e 
grass.

Baseline:  a boy 
in a red shirt is 
climbing a rock 
wall. 
Sparse: a young 
girl is jumping off 
a tree. 

DSD: a young girl 
in a pink shirt is 
s w i n g i n g o n a 
swing.

Baseline:    a     
basketball player in 
a red uniform is 
playing with a ball. 
Sparse: a basketball 
player in a blue 
uniform is jumping 
over the goal. 
DSD: a basketball 
player in a white 
uniform is trying to 
make a shot.

Baseline:   a person in 
a red jacket is riding a  
b i k e t h r o u g h t h e   
woods. 
Sparse: a car drives 
through a mud puddle. 

DSD: a car drives 
through a forest.

�1

Figure 3: Visualization of DSD training improves the performance of image captioning.

the forest from the background. The good performance of DSD training generalizes beyond these
examples, more image caption results generated by DSD training is provided in the supplementary
material.

Table 7: DSD results on NeuralTalk
NeuralTalk BLEU-1 BLEU-2 BLEU-3 BLEU-4 Sparsity

Baseline 57.2 38.6 25.4 16.8 0%
Sparse 58.4 39.7 26.3 17.5 80%
DSD 59.2 40.7 27.4 18.5 0%

Improvement (abs) 2.0 2.1 2.0 1.7 -
Improvement (rel) 3.5% 5.4% 7.9% 10.1% -

3.7 DeepSpeech

We explore DSD training on speech data using the DeepSpeech network [16, 3]. DSD training
experiments are performed on the 5 layer model with 1 recurrent layer DeepSpeech network (DS1)
that contains approximately 8 million parameters. The DS1 model is described in Table 8. The
training data set used is Wall Street Journal (WSJ), which contains approximately 37,000 training
utterances (81 hours of speech). We benchmark DSD training on two test sets from the WSJ corpus of
read articles. The Word Error Rate (WER) reported on the test sets for the baseline model is different
from the those in DeepSpeech2 [3] due to two factors. The Deep Speech 2 models were trained using
much larger data sets containing approximately 12,000 hours of multi-speaker speech data. Secondly,
in Deep Speech 2, WER was evaluated with beam search and a language model; here the network
output is obtained using only max decoding to show improvement in the neural network accuracy.

Table 8: Deep Speech 1 Architecture
Layer ID Type #Params
layer 0 Convolution 1814528
layer 1 FullyConnected 1049600
layer 2 FullyConnected 1049600
layer 3 Bidirectional Recurrent 3146752
layer 4 FullyConnected 1049600
layer 5 CTCCost 29725

The baseline DS1 model is trained for 50 epochs on WSJ training data. The weights from this model
are pruned for the sparse iteration of DSD training. Weights are pruned in the FullyConnected layers
and the Bidirectional Recurrent layer only. Each layer is pruned to achieve 50% sparsity. This results
in overall sparsity of 32.2% across the entire network. This sparse model is re-trained on 50 epochs
of WSJ data. For the final dense training, the pruned weights are initialized to zero and trained again
on 50 epochs of WSJ training data. This step completes one iteration of DSD training. We use
Nesterov SGD to train the model, reduce the learning rate with each re-training, and keep all other
hyper parameters unchanged.

6

Baseline model: Andrej Karpathy, Neural Talk model zoo.

DSD on Caption Generation

Han et al. “DSD: Dense-Sparse-Dense Training for Deep Neural Networks”, ICLR 2017
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A Appendix: More Examples of DSD Training Improves the Captions
Generated by NeuralTalk (Images from Flickr-8K Test Set)

Baseline: a man in a red shirt and 
jeans is riding a bicycle down a street. 
Sparse: a man in a red shirt and a 
woman in a wheelchair. 
DSD: a man and a woman are riding on 
a street.

Baseline:  two girls in bathing suits are 
playing in the water. 
Sparse:  two children are playing in the 
sand. 
DSD: two children are playing in the 
sand.

Baseline:   a group of people are 
standing in front of a building. 
Sparse: a group of people are standing 
in front of a building. 
DSD: a group of people are walking in a 
park.

Baseline: a dog runs through the grass. 
Sparse: a dog runs through the grass. 
DSD: a white and brown dog is running 
through the grass.

Baseline:  a group of football players in 
red uniforms. 
Sparse:  a group of football players in a 
field. 
DSD: a group of football players in red 
and white uniforms.

Baseline:  a group of people sit on a 
bench in front of a building. 
Sparse: a group of people are 
standing in front of a building. 
DSD: a group of people are standing 
in a fountain.

Baseline: a man in a black jacket and a 
black jacket is smiling. 
Sparse: a man and a woman are standing 
in front of a mountain. 
DSD: a man in a black jacket is standing 
next to a man in a black shirt.

Baseline:a young girl in a red dress is 
holding a camera. 
Sparse: a little girl in a pink dress is 
standing in front of a tree. 
DSD: a little girl in a red dress is 
holding a red and white flowers.

Baseline:  a man in a red jacket is 
standing in front of a white building. 
Sparse:  a man in a black jacket is 
standing in front of a brick wall. 
DSD: a man in a black jacket is 
standing in front of a white building.

Baseline:  a man in a red shirt is 
standing on a rock. 
Sparse: a man in a red jacket is 
standing on a mountaintop. 
DSD: a man is standing on a rock 
overlooking the mountains.

Baseline:  a group of people are sitting in 
a subway station. 
Sparse: a man and a woman are sitting 
on a couch. 
DSD: a group of people are sitting at a 
table in a room.

Baseline: a soccer player in a red and 
white uniform is running on the field. 
Sparse: a soccer player in a red uniform 
is tackling another player in a white 
uniform. 
DSD: a soccer player in a red uniform 
kicks a soccer ball.

Baseline: a young girl in a swimming 
pool. 
Sparse:  a young boy in a swimming 
pool. 
DSD: a girl in a pink bathing suit 
jumps into a pool.

Baseline:  a soccer player in a red 
and white uniform is playing with a 
soccer ball. 
Sparse: two boys playing soccer. 
DSD: two boys playing soccer.

Baseline: a girl in a white dress is 
standing on a sidewalk. 
Sparse: a girl in a pink shirt is 
standing in front of a white building. 
DSD: a girl in a pink dress is walking 
on a sidewalk.

Baseline:  a boy is swimming in a pool. 
Sparse: a small black dog is jumping 
into a pool. 
DSD: a black and white dog is swimming 
in a pool.

A. Supplementary Material: More Examples of DSD Training Improves the Performance of 
NeuralTalk Auto-Caption System

�1
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Baseline model: Andrej Karpathy, Neural Talk model zoo.
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CPUs Are Targeting Deep Learning 

Image Source: Intel, Data Source: Next Platform 

Knights Mill: next gen Xeon Phi “optimized for deep learning”  

•  7 TFLOPS FP32 

•  16GB MCDRAM– 400 GB/s 

•  245W TDP 

•  29 GFLOPS/W (FP32) 

•  14nm process 

Intel Knights Landing (2016) 

Intel announced the addition of new vector instructions for deep learning 
(AVX512-4VNNIW and AVX512-4FMAPS), October 2016 

Slide Source: Sze et al Survey of DNN Hardware,  MICRO’16 Tutorial. 
Image Source: Intel, Data Source: Next Platform 
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GPUs Are Targeting Deep Learning 

•  10/20 TFLOPS FP32/FP16 

•  16GB HBM – 750 GB/s 

•  300W TDP 

•  67 GFLOPS/W (FP16) 

•  16nm process 

•  160GB/s NV Link  

Source: Nvidia 

Nvidia PASCAL GP100 (2016) 

GPUs for Training

Slide Source: Sze et al Survey of DNN Hardware,  MICRO’16 Tutorial. 
Data Source: NVIDIA



GPU Systems for Training

4 

Systems for Deep Learning 

•  170 TFLOPS 

•  8× Tesla P100, Dual Xeon 

•  NVLink Hybrid Cube Mesh 

•  Optimized DL Software 

•  7 TB SSD Cache 

•  Dual 10GbE, Quad IB 100Gb 

•  3RU – 3200W 

Source: Nvidia 

Nvidia DGX-1 (2016) 

Slide Source: Sze et al Survey of DNN Hardware,  MICRO’16 Tutorial. 
Data Source: NVIDIA
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Cloud Systems for Deep Learning 

•  Open Rack Compliant 

•  Powered by 8 Tesla M40 GPUs 

•  2x Faster Training for Faster Deployment 

•  2x Larger Networks for Higher Accuracy 
 

Source: Facebook 

Facebook’s Deep Learning Machine 

Cloud Systems for Training

Facebook Big Sur

Slide Source: Sze et al Survey of DNN Hardware,  MICRO’16 Tutorial. 
Data Source: Facebook
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1. Pruning
2. Weight Sharing 
3. Quantization 
4. Low Rank Approximation
5. Binary / Ternary Net
6. Winograd Transformation

1. Saves BW by Better Data Flow
2. Saves BW by Compression
3. Replace Mul with Lookup
4. Separable Kernel + Transpose SRAM
5. Binary / Ternary NN Accelerator

1. Batch Normalization
2. Model Distillation
3. DSD Training

1. CPU
2. GPU
3. GPU Cloud 

Wrap-Up
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Phones Drones

Self Driving CarsGlasses

Robots

Limited Resource
Battery Constrained
Cooling Constrained

Future: Intelligence on Mobile



PC                        Mobile-First                AI-First

Computation Mobile  
Computation

Brain-Inspired  
Intelligent 

Computation
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Sundar Pichai, Google IO, 2016

Outlook: the Path for Computation

https://blog.google/products/assistant/personal-google-just-you/
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