Deep Learning Tutorial and Recent Trends

Song Han

Stanford University

Feb 22, 2017 FPGA'17, Monterey

Intro

Song Han PhD Candidate Stanford Bill Dally Chief Scientist NVIDIA Professor Stanford

Deep Learning is Changing Our Lives

Self-Driving

Machine Translation

Artistic Style Transfer

Machine Learning 101: the Setup

weights/parameters

Machine Learning 101: the Setup

Machine Learning 101: the Setup

Models are Getting Larger

Dally, NIPS'2016 workshop on Efficient Methods for Deep Neural Networks

The Problem of Deep Learning

Computation Intensive, Memory Intensive, Difficult to Deploy

AlphaGo: 1920 CPUs and 280 GPUs, \$3000 electric bill per game

Given the power budget, Moore's law is no longer providing more computation

Improve the Efficiency of Deep Learning by Algorithm-Hardware Co-Design

Application as Black Box

Open the Box for HW Design

Breaks the boundary between application and architecture

Algorithm

Hardware

Agenda

Agenda

Agenda

The Problem: Large DNN Model

App developers suffers from the model size

This item is over 100MB.

Microsoft Excel will not download until you connect to Wi-Fi.

The Problem: Large DNN Model

Hardware engineer suffers from the model size larger model => more memory reference => more energy

				Rela	tive Energ	gy Cost	
Operation	Energy [pJ]	Relative Cost					
32 bit int ADD	0.1	1					
32 bit float ADD	0.9	9					
32 bit Register File	1	10					
32 bit int MULT	3.1	31					
32 bit float MULT	3.7	37					
32 bit SRAM Cache	5	50					
32 bit DRAM Memory	640	6400					
			1	10	100	1000	10000

Figure 1: Energy table for 45nm CMOS process. Memory access is 2-3 orders of magnitude more energy expensive than arithmetic operations.

The Problem of Large DNN on Mobile

Hardware engineer suffers from the model size larger model => more memory reference => more energy

Energy [pJ]	Relative Cost	
0.1	1	
0.9	9	
1	10	
3.1	31	
3.7	37	
5	50	
640	6400	
	0.1 0.9 1 3.1 3.7 5 640	Energy [pJ] Relative Cost 0.1 1 0.9 9 1 10 3.1 31 3.7 37 5 50 640 6400

Stanford University

Figure 1: Energy table for 45nm CMOS process. Memory access is 2 orders of magnitude more energy expensive than arithmetic operations.

Part 1: Algorithms for Efficient Inference

- 1. Pruning
- 2. Weight Sharing
- 3. Quantization
- 4. Low Rank Approximation
- 5. Binary / Ternary Net
- 6. Winograd Transformation

Part 1: Algorithms for Efficient Inference

- 1. Pruning
- 2. Weight Sharing
- 3. Quantization
- 4. Low Rank Approximation
- 5. Binary / Ternary Net
- 6. Winograd Transformation

Pruning Neural Networks

Han et al. Learning both Weights and Connections for Efficient Neural Networks, NIPS'15

Christopher A Walsh. Peter Huttenlocher (1931-2013). Nature, 502(7470):172–172, 2013.

AlexNet

Han et al. Learning both Weights and Connections for Efficient Neural Networks, NIPS 2015

Retrain to Recover Accuracy

Han et al. Learning both Weights and Connections for Efficient Neural Networks, NIPS 2015

Pruning RNN and LSTM

Pruning NeuralTalk and LSTM

	6 18 9
1	U
A	- F

- Original: a basketball player in a white uniform is playing with a ball
- Pruned 90%: a basketball player in a white uniform is playing with a basketball

- Original : a brown dog is running through a grassy field
- Pruned 90%: a brown dog is running through a grassy area

- Original : a man is riding a surfboard on a wave
- Pruned 90%: a man in a wetsuit is riding a wave on a beach
- Original : a soccer player in red is running in the field
- Pruned <u>95%</u>: a man in a red shirt and black and white black shirt is running through a field

Speedup for Pruned FC layer

Energy Efficiency for Pruned FC layer

Part 1: Algorithms for Efficient Inference

- 1. Pruning
- 2. Weight Sharing
- 3. Quantization
- 4. Low Rank Approximation
- 5. Binary / Ternary Net
- 6. Winograd Transformation

weights (32 bit float)

2.09	-0.98	1.48	0.09
0.05	-0.14	-1.08	2.12
-0.91	1.92	0	-1.03
1.87	0	1.53	1.49

Han et al. Deep Compression, ICLR 2016 (Best Paper Award)

centroids

3: 2.00
2: 1.50
1: 0.00
0: -1.00

Han et al. Deep Compression, ICLR 2016 (Best Paper Award)

	weią (32 bi	ghts t float)				cluster (2 bit	r index uint)	{	C	entroic	ls
2.09	-0.98	1.48	0.09		3	0	2	1	3:	2.00	
0.05	-0.14	-1.08	2.12	cluster	1	1	0	3	2:	1.50	
-0.91	1.92	0	-1.03		0	3	1	0	1:	0.00	
1.87	0	1.53	1.49		3	1	2	2	0:	-1.00	

Han et al. Deep Compression, ICLR 2016 (Best Paper Award)

centroids

3: **2.00**

2: 1.50

1: **0.00**

0: -1.00

weights (32 bit float)					cluster index (2 bit uint)						
2.09	-0.98	1.48	0.09		3	0	2	1			
0.05	-0.14	-1.08	2.12	cluster	1	1	0	3			
-0.91	1.92	0	-1.03		0	3	1	0			
1.87	0	1.53	1.49		3	1	2	2			

gradient

-0.03	-0.01	0.03	0.02
-0.01	0.01	-0.02	0.12
-0.01	0.02	0.04	0.01
-0.07	-0.02	0.01	-0.02

Han et al. Deep Compression, ICLR 2016 (Best Paper Award)

weights (32 bit float)				cluster index (2 bit uint)				ce	ntroid	S		
2.09	-0.98	1.48	0.09		3	0	2	1	3:	2.00		
0.05	-0.14	-1.08	2.12	cluster	1	1	0	3	2:	1.50		
-0.91	1.92	0	-1.03		0	3	1	0	1:	0.00		
1.87	0	1.53	1.49	-	3	1	2	2	0:	-1.00		
	gra	dient		_		-	-	-				
-0.03	-0.01	0.03	0.02		-0.03	0.12	0.02	-0.07				
-0.01	0.01	-0.02	0.12	group by	0.03	0.01	-0.02		_			
-0.01	0.02	0.04	0.01		0.02	-0.01	0.01	0.04	-0.02	2		
-0.07	-0.02	0.01	-0.02		-0.01	-0.02	-0.01	0.01		_		

Han et al. Deep Compression, ICLR 2016 (Best Paper Award)
Weight Sharing

Han et al. Deep Compression, ICLR 2016 (Best Paper Award)

Weight Sharing

Han et al. Deep Compression, ICLR 2016 (Best Paper Award)

Trained Quantization Changes Weight Distribution

Han et al. Deep Compression, ICLR 2016 (Best Paper Award)

Trained Quantization Changes Weight Distribution

Han et al. Deep Compression, ICLR 2016 (Best Paper Award)

Pruning Trained Quantization

Huffman Coding

Trained Quantization Changes Weight Distribution

Han et al. Deep Compression, ICLR 2016 (Best Paper Award)

Bits Per Weight

Han et al. Deep Compression, ICLR 2016 (Best Paper Award)

Pruning + Trained Quantization

AlexNet on ImageNet

Han et al. Deep Compression, ICLR 2016 (Best Paper Award)

Results of Deep Compression

Network	Original Compressed Size Size	Compression Ratio	Original Accuracy	Compressed Accuracy
LeNet-300	1070KB → 27KB	40x	98.36% -	→ 98.42%
LeNet-5	1720KB → 44KB	39x	99.20% -	→ 99.26%
AlexNet	240MB → 6.9MB	35x	80.27% -	→ 80.30%
VGGNet	550MB → 11.3MB	49x	88.68% -	→ 89.09%
GoogleNet	28MB → 2.8MB	10x	88.90% -	→ 88.92%
SqueezeNet	4.8MB → 0.47MB	10x	80.32% -	→ 80.35%

Han et al. Deep Compression, ICLR 2016 (Best Paper Award)

Part 1: Algorithms for Efficient Inference

- 1. Pruning
- 2. Weight Sharing
- 3. Quantization
- 4. Low Rank Approximation
- 5. Binary / Ternary Net
- 6. Winograd Transformation

Quantizing the Weight and Activation

- Train with float
- Quantizing the weight and activation:
 - Gather the statistics for weight and activation
 - Choose proper radix point position
- Fine-tune in float format
- Convert to fixed-point format

Qiu et al. Going Deeper with Embedded FPGA Platform for Convolutional Neural Network, FPGA'16

Quantization Result

Qiu et al. Going Deeper with Embedded FPGA Platform for Convolutional Neural Network, FPGA'16

Part 1: Algorithms for Efficient Inference

- 1. Pruning
- 2. Weight Sharing
- 3. Quantization
- 4. Low Rank Approximation
- 5. Binary / Ternary Net
- 6. Winograd Transformation

Low Rank Approximation for Conv

- Layer responses lie in a lowrank subspace
- Decompose a convolutional layer with d filters with filter size $k \times k \times c$ to
 - A layer with d' filters ($k \times k \times c$)
 - A layer with d filter $(1 \times 1 \times d')$

Zhang et al Efficient and Accurate Approximations of Nonlinear Convolutional Networks CVPR'15

Low Rank Approximation for Conv

speedup	rank sel.	Conv1	Conv2	Conv3	Conv4	Conv5	Conv6	Conv7	err. † %
2×	no	32	110	199	219	219	219	219	1.18
2×	yes	32	83	182	211	239	237	253	0.93
$2.4 \times$	no	32	96	174	191	191	191	191	1.77
$2.4 \times$	yes	32	74	162	187	207	205	219	1.35
3×	no	32	77	139	153	153	153	153	2.56
3×	yes	32	62	138	149	166	162	167	2.34
$4\times$	no	32	57	104	115	115	115	115	4.32
4×	yes	32	50	112	114	122	117	119	4.20
5×	no	32	46	83	92	92	92	92	6.53
5×	yes	32	41	94	93	98	92	90	6.47

Zhang et al Efficient and Accurate Approximations of Nonlinear Convolutional Networks CVPR'15

Low Rank Approximation for FC

Build a mapping from row / column indices of matrix W = [W(x, y)] to vectors i and $j: x \leftrightarrow i = (i_1, \ldots, i_d)$ and $y \leftrightarrow j = (j_1, \ldots, j_d)$.

TT-format for matrix W: $W(i_1, \ldots, i_d; j_1, \ldots, j_d) = W(x(i), y(j)) = \underbrace{G_1[i_1, j_1]}_{1 \times r} \underbrace{G_2[i_2, j_2]}_{r \times r} \ldots \underbrace{G_d[i_d, j_d]}_{r \times 1}$

Туре	1 im. time (ms)	100 im. time (ms)
CPU fully-connected layer	16.1	97.2
CPU TT-layer	1.2	94.7
GPU fully-connected layer	2.7	33
GPU TT-layer	1.9	12.9

Novikov et al Tensorizing Neural Networks, NIPS'15

Part 1: Algorithms for Efficient Inference

- 1. Pruning
- 2. Weight Sharing
- 3. Quantization
- 4. Low Rank Approximation
- 5. Binary / Ternary Net
- 6. Winograd Transformation

Binary / Ternary Net: Motivation

Binary-Weight-Network and XNOR-Network

 $\mathbf{X}^{\mathsf{T}}\mathbf{W} \approx \beta \mathbf{H}^{\mathsf{T}} \alpha \mathbf{B}$ $\mathbf{H}, \mathbf{B} \in \{+1, -1\}^{n} \text{ and } \beta, \alpha \in \mathbb{R}^{+}$

- Binarize both weights and inputs
- Convolution as Binary dot product
- Dot product between implemented by XNOR-Bitcounting operations

$$\alpha^*, \mathbf{B}^*, \beta^*, \mathbf{H}^* = \underset{\alpha, \mathbf{B}, \beta, \mathbf{H}}{\operatorname{argmin}} \| \mathbf{X}^\mathsf{T} \mathbf{W} - \beta \alpha \mathbf{H}^\mathsf{T} \mathbf{B} \|$$

$$\gamma^*, \mathbf{C}^* = \underset{\gamma, \mathbf{C}}{\operatorname{argmin}} \|\mathbf{1}^{\mathsf{T}}\mathbf{Y} - \gamma\mathbf{1}^{\mathsf{T}}\mathbf{C}\|$$
$$\mathbf{C}^* = \operatorname{sign}(\mathbf{Y}) = \operatorname{sign}(\mathbf{X}^{\mathsf{T}})\operatorname{sign}(\mathbf{W}) = \mathbf{H}^{*\mathsf{T}}\mathbf{B}^*$$

$$\gamma^* = \frac{\sum |\mathbf{Y}_i|}{n} = \frac{\sum |\mathbf{X}_i| |\mathbf{W}_i|}{n} \approx \left(\frac{1}{n} \|\mathbf{X}\|_{\ell_1}\right) \left(\frac{1}{n} \|\mathbf{W}\|_{\ell_1}\right) = \beta^* \alpha^*$$

Rastegari et al. XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks ECCV 2016

Binary-Weight-Network and XNOR-Network

Rastegari et al. XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks ECCV 2016

Binary-Weight-Network and XNOR-Network

Rastegari et al. XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks ECCV 2016

Trained Ternary Quantization

Zhu, Han, Mao, Dally. Trained Ternary Quantization, ICLR'17

Pruning Trained Quantization Huffman Coding

Weight Evolution during Training

Figure 2: Ternary weights value (above) and distribution (below) with iterations for different layers of ResNet-20 on CIFAR-10.

Visualization of the TTQ Kernels

Pruning

Trained Quantization

Huffman Coding

Error Rate on ImageNet

Figure 4: Training and validation accuracy of AlexNet on ImageNet

Zhu, Han, Mao, Dally. Trained Ternary Quantization, ICLR'17

Pruning Trained Quantization Huffman Coding

Related Works

Lin, Zhouhan, et al. "Neural networks with few multiplications." *arXiv preprint arXiv:1510.03009* (2015).

Introduce Binary and Ternary Connection.

Use probabilistic quantization method.

Introduce concept of latent weights.

Zhou, Shuchang, et al. "DoReFa-Net: Training Low Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients." *arXiv preprint arXiv:1606.06160* (2016).

Adopt Thresholding quantization method.

Related Works

Li, Fengfu, and Bin Liu. "Ternary Weight Networks." *arXiv preprint arXiv:1605.04711* (2016).

Treat quantization as

$$\alpha^*, \Delta^* = \underset{\alpha \ge 0, \Delta > 0}{\operatorname{argmin}} ||\mathbf{W} - \alpha \mathbf{W}^t||_2^2$$
$$\alpha^*_{\Delta} = \frac{1}{|\mathbf{I}_{\Delta}|} \sum_{i \in \mathbf{I}_{\Delta}} |\mathbf{W}_i|. \quad \Delta^* = 0.7 \cdot E(|\mathbf{W}|) \approx \frac{0.7}{n} \sum_{i=1}^n |\mathbf{W}_i|$$

Back-propagate using identical mapping.

Rastegari, Mohammad, et al. "XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks." *arXiv preprint arXiv:1603.05279*(2016).

Same strategy on binary weights.

Part 1: Algorithms for Efficient Inference

- 1. Pruning
- 2. Weight Sharing
- · 3. Quantization
- 4. Low Rank Approximation
- 5. Binary / Ternary Net
- 6. Winograd Transformation

Winograd Convolution

$$Y_{i,k,\tilde{x},\tilde{y}} = \sum_{c=1}^{C} D_{i,c,\tilde{x},\tilde{y}} * G_{k,c}$$
$$= \sum_{c=1}^{C} A^{T} \left[U_{k,c} \odot V_{c,i,\tilde{x},\tilde{y}} \right] A$$
$$= A^{T} \left[\sum_{c=1}^{C} U_{k,c} \odot V_{c,i,\tilde{x},\tilde{y}} \right] A$$

Winograd. *Arithmetic complexity of computations*, volume 33. Siam, 1980 Lavin & Gray, Fast Algorithms for Convolutional Neural Networks, 2015

Training in the Winograd Domain

Producing 4 output pixels:

Direct Convolution:

- 4*9=36 multiplications (1x)

Winograd convolution:

- 4*4=16 multiplications (2.25x less)

Liu et al. "Efficient Sparse-Winograd Convolutional Neural Networks", submitted to ICLR 2017 workshop

Training in the Winograd Domain

Producing 4 output pixels:

Direct Convolution:

- 4*9=36 multiplications (1x)
- sparse weight [NIPS'15] (3x)
 - sparse activation (relu) (3x)
- Overall saving: 9x

Winograd convolution:

- 4*4=16 multiplications (2.25x less)
- dense weight (1x)
- dense activation (1x)
- Overall saving: 2.25x

Liu et al. "Efficient Sparse-Winograd Convolutional Neural Networks", submitted to ICLR 2017 workshop

Solution: Fold Relu into Winograd

Producing 4 output pixels:

Direct Convolution:

- 4*9=36 multiplications (1x)
- sparse weight [NIPS'15] (3x)
- sparse activation (relu) (3x)
- Overall saving: 9x

Winograd convolution:

- 4*4=16 multiplications (2.25x less)
- sparse weight (2.5x)
- dense activation (2.25x)
- Overall saving: **12x**

Liu et al. "Efficient Sparse-Winograd Convolutional Neural Networks", submitted to ICLR 2017 workshop

Result

Liu et al. "Efficient Sparse-Winograd Convolutional Neural Networks", submitted to ICLR 2017 workshop

Agenda

Diannao (Electric Brain)

Component	Area		Power		Critical
or Block	in μm^2	(%)	in mW	(%)	path in ns
ACCELERATOR	3,023,077		485		1.02
Combinational	608,842	(20.14%)	89	(18.41%)	
Memory	1,158,000	(38.31%)	177	(36.59%)	
Registers	375,882	(12.43%)	86	(17.84%)	
Clock network	68,721	(2.27%)	132	(27.16%)	
Filler cell	811,632	(26.85%)			
SB	1,153,814	(38.17%)	105	(22.65%)	
NBin	427,992	(14.16%)	91	(19.76%)	
NBout	433,906	(14.35%)	92	(19.97%)	
NFU	846,563	(28.00%)	132	(27.22%)	
СР	141,809	(5.69%)	31	(6.39%)	
AXIMUX	9,767	(0.32%)	8	(2.65%)	
Other	9,226	(0.31%)	26	(5.36%)	

Table 6. Characteristics of accelerator and breakdown by component type (first 5 lines), and functional block (last 7 lines).

- Diannao improved CNN computation efficiency by using dedicated functional units and memory buffers optimized for the CNN workload.
- Multiplier + adder tree + shifter + non-linear lookup orchestrated by instructions
- Weights in off-chip DRAM
- 452 GOP/s, 3.02 mm^2 and 485 mW

Chen et al. Diannao: A small-footprint high-throughput accelerator for ubiquitous machine-learning, ASPLOS 2014

Diannao and Friends

eDRAN Bank3

	-	HTO PH			-	
I	Tile0	Tile1	HT0 Controller	Tite4	Tile5	
COLUMN DE LA	Tile2	Tile3		Tile6	Tile7	HT3 PHY
	HT2 Controller	Cent	ral E	lock	HT3 Controll	er
HT2 PHY	Tile8	Tile9		Tile12	Tile13	
	Tile10	Tile11	HT1 Controller	Tile14	Tile15	Ļ
			AL TING	IT1 PHY	and a state	1

		HT2	2.0 (North L	ink)				CD
Ξ	tile	tile		tile	tile	I		eDRAM
72.0 (V	tile	tile	eDRAM	tile	tile	T2.0 (I		вапки
Vest Lir	tile	tile	router	tile	tile	ast Lin	16 input neurons	CP
л Э	tile	tile		tile	tile	Ś		SB eDRAM
		HT2	2.0 (South L	ink)				DUIIKZ

ShiDiannao (Vision Computer) It can fits small model (up-to 64K parameters) on-chip. It maps the computation on 2D PE array. The chip is 4.86 mm^2 and consumes 320 mW

Chen et al. Diannao: A small-footprint high-throughput accelerator for ubiquitous machine-learning, ASPLOS 2014

NBin	
NET	SB
NBOUT	
	TB

Eyeriss: Reduce Memory Access by Row-Stationary Dataflow

Die Photo

Chen et al Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks ISCA 2016
Eyeriss: Reduce Memory Access by Row-Stationary Dataflow

Chen et al Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks ISCA 2016

EIE: Reduce Memory Access by Compression

physically

Virtual Weight	W _{0,0}	W _{0,1}	W _{4,2}	W _{0,3}	W _{4,3}
Relative Index	0	1	2	0	0
Column Pointer	0	1	2	3	

Han et al. "EIE: Efficient Inference Engine on Compressed Deep Neural Network", ISCA 2016, Hotchips 2016

EIE Architecture

Weight decode

Address Accumulate

Han et al. "EIE: Efficient Inference Engine on Compressed Deep Neural Network", ISCA 2016

Comparison: Energy Efficiency

Han et al. "EIE: Efficient Inference Engine on Compressed Deep Neural Network", ISCA 2016

Dynamic Fixed-Point + Lookup

DNPU: An 8.1TOPS/W Reconfigurable CNN-RNN Processor for General Purpose Deep Neural Networks

- Architecture: Conv accelerator + FC accelerator + RISC controller
- Mixed tiling strategy
- Dynamic fixed-point with on-line adaptation
- Quantization table based multiplication

Sparse Activation + Sign-Magnitude Number Format

A 28nm SoC with a 1.2GHz 568nJ/Prediction Sparse Deep-Neural-Network with >0.1 Timing Error Rate Tolerance for IoT Applications

- HW support data sparsity
- Reduce switching using sign-magnitude number format
- Timing violation tolerant

Separable Kernel + Transpose-Read SRAM

A 0.62mW Ultra-Low-Power Convolutional- Neural-Network Face-Recognition Processor and a CIS Integrated with Always-On Haar-Like Face Detector

Binary / Ternary NN Accelerator

Accelerating Binarized Convolutional Neural Networks with Software-Programmable FPGAs

3:30 -3:55 Ritchie Zhao1, Weinan Song1, Wentao Zhang1, Tianwei Xing2, Jeng-Hau Lin3, Mani Srivastava2, Rajesh Gupta3, Zhiru Zhang1 1Cornell University, 2UCLA, 3UCSD

FINN: A Framework for Fast, Scalable Binarized Neural Network Inference

9:25 9:50 Yaman Umuroglu1,2, Nicholas J. Fraser1,3, Giulio Gambardella1, Michaela Blott1, Philip Leong3, Magnus Jahre2, Kees Vissers1
1Xilinx Research Labs, 2Norwegian University of Science and Technology, 3University of Sydney

Agenda

Part 3: Efficient Training Algorithm

- 1. Batch Normalization
- 2. Model Distillation
- 3. DSD: Dense-Sparse-Dense Training

Part 3: Efficient Training Algorithm

- 1. Batch Normalization
- 2. Model Distillation
- 3. DSD: Dense-Sparse-Dense Training

Batch Normalization

loffe et al. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift http://torch.ch/blog/2016/02/04/resnets.html

Batch Normalization

Fei-Fei Li & Andrej Karpathy & Justin Johnson, Stanford CS231n course slides

Batch Normalization Helps Convergence

loffe et al. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

Tips Using Batch Normalization

- Increase learning rate.
- Remove Dropout
- Reduce the regularization.
- Accelerate the learning rate decay.
- Remove Local Response Normalization
- Shuffle training examples
- Reduce the photometric distortions.

loffe et al. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

Part 3: Efficient Training Algorithm

- 1. Batch Normalization
- 2. Model Distillation
- 3. DSD: Dense-Sparse-Dense Training

Softened outputs reveal the dark knowledge

cow	dog	cat	car	original hard
0	1	0	0	targets
COW	dog	cat	car	output of
10 ⁻⁶	.9	.1	10 ⁻⁹	geometric
				ensemble
COW	dog	cat	car	a offer and autout
.05	.3	.2	.005	of ensemble

Hinton et al. Dark knowledge / Distilling the Knowledge in a Neural Network

Softened outputs reveal the dark knowledge

$$p_i = \frac{\exp\left(\frac{z_i}{T}\right)}{\sum_j \exp\left(\frac{z_j}{T}\right)}$$

- Method: Divide score by a "temperature" to get a much softer distribution
- Result: Start with a trained model that classifies 58.9% of the test frames correctly. The new model converges to 57.0% correct even when it is only trained on 3% of the data

Hinton et al. Dark knowledge / Distilling the Knowledge in a Neural Network

Part 3: Efficient Training Algorithm

- 1. Batch Normalization
- 2. Model Distillation
- 3. DSD: Dense-Sparse-Dense Training

DSD: Dense Sparse Dense Training

DSD produces same model architecture but can find better optimization solution, arrives at better local minima, and achieves higher prediction accuracy across a wide range of deep neural networks on CNNs / RNNs / LSTMs.

Han et al. "DSD: Dense-Sparse-Dense Training for Deep Neural Networks", ICLR 2017

DSD: Intuition

learn the trunk first

then learn the leaves

Han et al. "DSD: Dense-Sparse-Dense Training for Deep Neural Networks", ICLR 2017

Neural Network	Domain	Dataset	Туре	Baseline	DSD	Abs. Imp.	Rel. Imp.
GoogLeNet	Vision	ImageNet	CNN	$31.1\%^{1}$	30.0%	1.1%	3.6%
VGG-16	Vision	ImageNet	CNN	$31.5\%^{1}$	27.2%	4.3%	13.7%
ResNet-18	Vision	ImageNet	CNN	$30.4\%^{1}$	29.3%	1.1%	3.7%
ResNet-50	Vision	ImageNet	CNN	$24.0\%^{1}$	23.2%	0.9%	3.5%

DSD Model Zoo is online: <u>https://songhan.github.io/DSD</u>

Han et al. "DSD: Dense-Sparse-Dense Training for Deep Neural Networks", ICLR 2017

DSD: Results

Neural Network	Domain	Dataset	Туре	Baseline	DSD	Abs. Imp.	Rel. Imp.
GoogLeNet	Vision	ImageNet	CNN	$31.1\%^{1}$	30.0%	1.1%	3.6%
VGG-16	Vision	ImageNet	CNN	$31.5\%^{1}$	27.2%	4.3%	13.7%
ResNet-18	Vision	ImageNet	CNN	$30.4\%^{1}$	29.3%	1.1%	3.7%
ResNet-50	Vision	ImageNet	CNN	$24.0\%^{1}$	23.2%	0.9%	3.5%
NeuralTalk	Caption	Flickr-8K	LSTM	16.8^{2}	18.5	1.7	10.1%

DSD Model Zoo is online: <u>https://songhan.github.io/DSD</u>

Han et al. "DSD: Dense-Sparse-Dense Training for Deep Neural Networks", ICLR 2017

DSD: Results

Neural Network	Domain	Dataset	Туре	Baseline	DSD	Abs. Imp.	Rel. Imp.
GoogLeNet	Vision	ImageNet	CNN	$31.1\%^{1}$	30.0%	1.1%	3.6%
VGG-16	Vision	ImageNet	CNN	$31.5\%^{1}$	27.2%	4.3%	13.7%
ResNet-18	Vision	ImageNet	CNN	$30.4\%^{1}$	29.3%	1.1%	3.7%
ResNet-50	Vision	ImageNet	CNN	$24.0\%^{1}$	23.2%	0.9%	3.5%
NeuralTalk	Caption	Flickr-8K	LSTM	16.8^{2}	18.5	1.7	10.1%
DeepSpeech	Speech	WSJ'93	RNN	33.6% ³	31.6%	2.0%	5.8%
DeepSpeech-2	Speech	WSJ'93	RNN	14.5% ³	13.4%	1.1%	7.4%

DSD Model Zoo is online: <u>https://songhan.github.io/DSD</u>

Han et al. "DSD: Dense-Sparse-Dense Training for Deep Neural Networks", ICLR 2017

DSD on Caption Generation

Baseline model: Andrej Karpathy, Neural Talk model zoo. Han et al. "DSD: Dense-Sparse-Dense Training for Deep Neural Networks", ICLR 2017

A. Supplementary Material: More Examples of DSD framing improves the Ferrormance of NeuralTalk Auto-Caption System DSD on Caption Generation

- **<u>Baseline</u>**: a boy is swimming in a pool. Sparse: a small black dog is jumping into a pool.
- **DSD**: a black and white dog is swimming in front of a building. in a pool.

Baseline: a group of people are standing in front of a building. Sparse: a group of people are standing

DSD: a group of people are walking in a park.

- **Baseline**: two girls in bathing suits are playing in the water.
- **Sparse**: two children are playing in the sand.
- **DSD**: two children are playing in the sand.

Baseline: a man in a red shirt and jeans is riding a bicycle down a street. **Sparse**: a man in a red shirt and a woman in a wheelchair. **DSD**: a man and a woman are riding on a street.

Baseline: a group of people sit on a bench in front of a building. **Sparse**: a group of people are standing in front of a building. **DSD**: a group of people are standing 'in a fountain.

- **xBaseline**: a man in a black jacket and a black jacket is smiling.
- **Sparse**: a man and a woman are standing **Sparse**: a group of football players in a in front of a mountain.
- **DSD**: a man in a black jacket is standing next to a man in a black shirt.

- **Baseline**: a group of football players in **Baseline**: a dog runs through the grass. red uniforms.
- field.
- **DSD**: a group of football players in red and white uniforms.

Sparse: a dog runs through the grass. **DSD**: a white and brown dog is running through the grass.

Baseline model: Andrej Karpathy, Neural Talk model zoo.

Agenda

CPUs for Training

Intel Knights Landing (2016)

- 7 TFLOPS FP32
- 16GB MCDRAM- 400 GB/s
- 245W TDP
- 29 GFLOPS/W (FP32)
- 14nm process

Knights Mill: next gen Xeon Phi "optimized for deep learning"

Intel announced the addition of new vector instructions for deep learning (AVX512-4VNNIW and AVX512-4FMAPS), October 2016

Slide Source: Sze et al Survey of DNN Hardware, MICRO'16 Tutorial. Image Source: Intel, Data Source: Next Platform

GPUs for Training

Nvidia PASCAL GP100 (2016)

- 10/20 TFLOPS FP32/FP16
- 16GB HBM 750 GB/s
- 300W TDP
- 67 GFLOPS/W (FP16)
- 16nm process
- 160GB/s NV Link

Slide Source: Sze et al Survey of DNN Hardware, MICRO'16 Tutorial. Data Source: NVIDIA

GPU Systems for Training

Nvidia DGX-1 (2016)

- 170 TFLOPS
- 8× Tesla P100, Dual Xeon
- NVLink Hybrid Cube Mesh
- Optimized DL Software
- 7 TB SSD Cache
- Dual 10GbE, Quad IB 100Gb
- 3RU 3200W

Slide Source: Sze et al Survey of DNN Hardware, MICRO'16 Tutorial. Data Source: NVIDIA

Cloud Systems for Training

Facebook Big Sur

- Open Rack Compliant
- Powered by 8 Tesla M40 GPUs
- 2x Faster Training for Faster Deployment
- 2x Larger Networks for Higher Accuracy

Slide Source: Sze et al Survey of DNN Hardware, MICRO'16 Tutorial. Data Source: Facebook

Wrap-Up

Wrap-Up

Future: Intelligence on Mobile

Phones

Drones

Robots

Glasses

Self Driving Cars

Limited Resource Battery Constrained Cooling Constrained

Outlook: the Path for Computation

PC

Mobile-First

AI-First

Brain-Inspired Intelligent Computation

Sundar Pichai, Google IO, 2016

Thank you!

stanford.edu/~songhan

