
Eriko Nurvitadhi, Ganesh Venkatesh, Jaewoong Sim, Debbie Marr (Accelerator Architecture Lab)

Randy Huang, Jason Gee Hock Ong, Yeong Tat Liew (Programmable Solutions Group)

Krishnan Srivatsan, Duncan Moss, Suchit Subhaschandra (FPGA Product Team) 

Guy Boudoukh (Computer Vision Group)

Disclaimer: the views expressed in this talk are those of the speaker and not his employer.



Legal Disclaimer

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS.  NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS 
DOCUMENT.  EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE 
AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL 
PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death.  SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL 
APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, 
AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL 
APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these 
for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

The code names presented in this document are only for use by Intel to identify products, technologies, or services in development, that have not been made commercially available to the public, i.e., announced, launched or shipped. They 
are not "commercial" names for products or services and are not intended to function as trademarks. 

Results have been estimated or simulated using internal Intel analysis or architecture simulation or modeling, and provided to you for informational purposes. Any differences in your system hardware, software or configuration may affect 
your actual performance.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature may be obtained by calling 1-800-548-4725 or by visiting Intel's website at http://www.intel.com/design/literature.htm.

Intel is a trademark of Intel Corporation in the US and other countries.

Copyright © 2017 Intel Corporation. All rights reserved.

* Other brands and names may be claimed as the property of others.

http://www.intel.com/design/literature.htm


Deep Neural Networks (DNNs)
Popular machine learning (ML) approach for data analytics



Deep Neural Networks (DNNs)
Popular machine learning (ML) approach for data analytics

Training data

Training ModelFlower

Elephant

…



Deep Neural Networks (DNNs)
Popular machine learning (ML) approach for data analytics

Training data

Training ModelFlower

Elephant

…

Inference PredictionNew data

Model Flower 



Deep Neural Networks (DNNs)
Popular machine learning (ML) approach for data analytics

Consists of layers of neurons connected via weighted edges

Training data

Training ModelFlower

Elephant

…

Inference PredictionNew data

Model Flower 

W1 H2W2I H1 OW3

E.g., 4-layer 
neural net



Deep Neural Networks (DNNs)
Popular machine learning (ML) approach for data analytics

Consists of layers of neurons connected via weighted edges

Training data

Training ModelFlower

Elephant

…

Inference PredictionNew data

Model Flower 

W1 H2W2I H1 OW3

E.g., 4-layer 
neural net

Forward pass



Deep Neural Networks (DNNs)
Popular machine learning (ML) approach for data analytics

Consists of layers of neurons connected via weighted edges

Training data

Training ModelFlower

Elephant

…

Inference PredictionNew data

Model Flower 

W1 H2W2I H1 OW3

E.g., 4-layer 
neural net

Flower 

Forward pass



Deep Neural Networks (DNNs)
Popular machine learning (ML) approach for data analytics

Consists of layers of neurons connected via weighted edges

Training data

Training ModelFlower

Elephant

…

Inference PredictionNew data

Model Flower 

W1 H2W2I H1 OW3

E.g., 4-layer 
neural net

Flower 

Forward pass

Backward pass



Deep Neural Networks (DNNs)
Popular machine learning (ML) approach for data analytics

Consists of layers of neurons connected via weighted edges

State-of-the-art accuracies in multiple application domains

Training data

Training ModelFlower

Elephant

…

Inference PredictionNew data

Model Flower 

W1 H2W2I H1 OW3

E.g., 4-layer 
neural net

Flower 

Forward pass

Backward pass



DNNs Evolving Rapidly

20152012 2013 2014 2016

AlexNet
(~80% Top5)

8 layers
Params: 60M

Model: 240MB

Before 
2000

ResNet
(~94% top5)

152 layers
Params: 60M

Model: 240MB

VGG
(~89% top5)

19 layers
Params: 140M
Model: 500MB

LeNet5
5 layers

Params: 1M
Model: 4MB

Deeper
More params?
Larger model?

GoogLeNet
(~89% top5)

22 layers
Params: 6M

Model: 24MB



DNNs Evolving Rapidly

20152012 2013 2014 2016

AlexNet
(~80% Top5)

8 layers
Params: 60M

Model: 240MB

Before 
2000

ResNet
(~94% top5)

152 layers
Params: 60M

Model: 240MB

VGG
(~89% top5)

19 layers
Params: 140M
Model: 500MB

LeNet5
5 layers

Params: 1M
Model: 4MB

Deeper
More params?
Larger model?

Many efforts to improve efficiency

GoogLeNet
(~89% top5)

22 layers
Params: 6M

Model: 24MB



DNNs Evolving Rapidly

20152012 2013 2014 2016

AlexNet
(~80% Top5)

8 layers
Params: 60M

Model: 240MB

Before 
2000

ResNet
(~94% top5)

152 layers
Params: 60M

Model: 240MB

VGG
(~89% top5)

19 layers
Params: 140M
Model: 500MB

LeNet5
5 layers

Params: 1M
Model: 4MB

Deeper
More params?
Larger model?

Many efforts to improve efficiency

I OW

GoogLeNet
(~89% top5)

22 layers
Params: 6M

Model: 24MB



DNNs Evolving Rapidly

20152012 2013 2014 2016

AlexNet
(~80% Top5)

8 layers
Params: 60M

Model: 240MB

Before 
2000

ResNet
(~94% top5)

152 layers
Params: 60M

Model: 240MB

VGG
(~89% top5)

19 layers
Params: 140M
Model: 500MB

LeNet5
5 layers

Params: 1M
Model: 4MB

Deeper
More params?
Larger model?

Many efforts to improve efficiency

I OW
O

GoogLeNet
(~89% top5)

22 layers
Params: 6M

Model: 24MB



DNNs Evolving Rapidly

20152012 2013 2014 2016

AlexNet
(~80% Top5)

8 layers
Params: 60M

Model: 240MB

Before 
2000

ResNet
(~94% top5)

152 layers
Params: 60M

Model: 240MB

VGG
(~89% top5)

19 layers
Params: 140M
Model: 500MB

LeNet5
5 layers

Params: 1M
Model: 4MB

Deeper
More params?
Larger model?

Many efforts to improve efficiency

=

I OW

W

O

GoogLeNet
(~89% top5)

22 layers
Params: 6M

Model: 24MB



DNNs Evolving Rapidly

20152012 2013 2014 2016

AlexNet
(~80% Top5)

8 layers
Params: 60M

Model: 240MB

Before 
2000

ResNet
(~94% top5)

152 layers
Params: 60M

Model: 240MB

VGG
(~89% top5)

19 layers
Params: 140M
Model: 500MB

LeNet5
5 layers

Params: 1M
Model: 4MB

Deeper
More params?
Larger model?

Many efforts to improve efficiency

x

=

I OW I

W

O

GoogLeNet
(~89% top5)

22 layers
Params: 6M

Model: 24MB



DNNs Evolving Rapidly

20152012 2013 2014 2016

AlexNet
(~80% Top5)

8 layers
Params: 60M

Model: 240MB

Before 
2000

ResNet
(~94% top5)

152 layers
Params: 60M

Model: 240MB

VGG
(~89% top5)

19 layers
Params: 140M
Model: 500MB

LeNet5
5 layers

Params: 1M
Model: 4MB

Deeper
More params?
Larger model?

Many efforts to improve efficiency

x

=

I OW I

W

O

Batching

GoogLeNet
(~89% top5)

22 layers
Params: 6M

Model: 24MB



DNNs Evolving Rapidly

20152012 2013 2014 2016

AlexNet
(~80% Top5)

8 layers
Params: 60M

Model: 240MB

Before 
2000

ResNet
(~94% top5)

152 layers
Params: 60M

Model: 240MB

VGG
(~89% top5)

19 layers
Params: 140M
Model: 500MB

LeNet5
5 layers

Params: 1M
Model: 4MB

Deeper
More params?
Larger model?

Many efforts to improve efficiency

x

=

I OW I

W

O

Batching

GoogLeNet
(~89% top5)

22 layers
Params: 6M

Model: 24MB



DNNs Evolving Rapidly

20152012 2013 2014 2016

AlexNet
(~80% Top5)

8 layers
Params: 60M

Model: 240MB

Before 
2000

ResNet
(~94% top5)

152 layers
Params: 60M

Model: 240MB

VGG
(~89% top5)

19 layers
Params: 140M
Model: 500MB

LeNet5
5 layers

Params: 1M
Model: 4MB

Deeper
More params?
Larger model?

Many efforts to improve efficiency

x

=

I OW I

W

O

Batching

GoogLeNet
(~89% top5)

22 layers
Params: 6M

Model: 24MB



DNNs Evolving Rapidly

20152012 2013 2014 2016

AlexNet
(~80% Top5)

8 layers
Params: 60M

Model: 240MB

Before 
2000

ResNet
(~94% top5)

152 layers
Params: 60M

Model: 240MB

VGG
(~89% top5)

19 layers
Params: 140M
Model: 500MB

LeNet5
5 layers

Params: 1M
Model: 4MB

Reduce bitwidth

Deeper
More params?
Larger model?

Many efforts to improve efficiency

x

=

I OW I

W

O

Batching

GoogLeNet
(~89% top5)

22 layers
Params: 6M

Model: 24MB



DNNs Evolving Rapidly

20152012 2013 2014 2016

AlexNet
(~80% Top5)

8 layers
Params: 60M

Model: 240MB

Before 
2000

ResNet
(~94% top5)

152 layers
Params: 60M

Model: 240MB

VGG
(~89% top5)

19 layers
Params: 140M
Model: 500MB

LeNet5
5 layers

Params: 1M
Model: 4MB

Reduce bitwidth

Deeper
More params?
Larger model?

BinaryConnect
[NIPS’15]

Many efforts to improve efficiency

XNORNet
x

=

I OW I

W

O

Batching

GoogLeNet
(~89% top5)

22 layers
Params: 6M

Model: 24MB



DNNs Evolving Rapidly

20152012 2013 2014 2016

AlexNet
(~80% Top5)

8 layers
Params: 60M

Model: 240MB

Before 
2000

ResNet
(~94% top5)

152 layers
Params: 60M

Model: 240MB

VGG
(~89% top5)

19 layers
Params: 140M
Model: 500MB

LeNet5
5 layers

Params: 1M
Model: 4MB

Reduce bitwidth

Deeper
More params?
Larger model?

BinaryConnect
[NIPS’15]

Many efforts to improve efficiency

XNORNet
x

=

I OW I

W

OSparse weights

Batching

GoogLeNet
(~89% top5)

22 layers
Params: 6M

Model: 24MB



DNNs Evolving Rapidly

20152012 2013 2014 2016

AlexNet
(~80% Top5)

8 layers
Params: 60M

Model: 240MB

Before 
2000

ResNet
(~94% top5)

152 layers
Params: 60M

Model: 240MB

VGG
(~89% top5)

19 layers
Params: 140M
Model: 500MB

LeNet5
5 layers

Params: 1M
Model: 4MB

Reduce bitwidth

Deeper
More params?
Larger model?

BinaryConnect
[NIPS’15]

Many efforts to improve efficiency

XNORNet
x

=

I OW I

W

OSparse weights

Batching

GoogLeNet
(~89% top5)

22 layers
Params: 6M

Model: 24MB



DNNs Evolving Rapidly

20152012 2013 2014 2016

AlexNet
(~80% Top5)

8 layers
Params: 60M

Model: 240MB

Before 
2000

ResNet
(~94% top5)

152 layers
Params: 60M

Model: 240MB

VGG
(~89% top5)

19 layers
Params: 140M
Model: 500MB

LeNet5
5 layers

Params: 1M
Model: 4MB

Reduce bitwidth

Deeper
More params?
Larger model?

BinaryConnect
[NIPS’15]

Many efforts to improve efficiency

XNORNet
x

=

I OW I

W

OSparse weights

Batching

GoogLeNet
(~89% top5)

22 layers
Params: 6M

Model: 24MB



DNNs Evolving Rapidly

20152012 2013 2014 2016

AlexNet
(~80% Top5)

8 layers
Params: 60M

Model: 240MB

Before 
2000

ResNet
(~94% top5)

152 layers
Params: 60M

Model: 240MB

VGG
(~89% top5)

19 layers
Params: 140M
Model: 500MB

LeNet5
5 layers

Params: 1M
Model: 4MB

Reduce bitwidth

Deeper
More params?
Larger model?

BinaryConnect
[NIPS’15]

Many efforts to improve efficiency

XNORNet
x

=

I OW I

W

OSparse weights
Sparse activations

Batching

GoogLeNet
(~89% top5)

22 layers
Params: 6M

Model: 24MB



DNNs Evolving Rapidly

20152012 2013 2014 2016

AlexNet
(~80% Top5)

8 layers
Params: 60M

Model: 240MB

Before 
2000

ResNet
(~94% top5)

152 layers
Params: 60M

Model: 240MB

VGG
(~89% top5)

19 layers
Params: 140M
Model: 500MB

LeNet5
5 layers

Params: 1M
Model: 4MB

Reduce bitwidth

Deeper
More params?
Larger model?

BinaryConnect
[NIPS’15]

Many efforts to improve efficiency

XNORNet
x

=

I OW I

W

O

2

3

0
Sparse weights
Sparse activations

Batching

GoogLeNet
(~89% top5)

22 layers
Params: 6M

Model: 24MB



DNNs Evolving Rapidly

20152012 2013 2014 2016

AlexNet
(~80% Top5)

8 layers
Params: 60M

Model: 240MB

Before 
2000

ResNet
(~94% top5)

152 layers
Params: 60M

Model: 240MB

VGG
(~89% top5)

19 layers
Params: 140M
Model: 500MB

LeNet5
5 layers

Params: 1M
Model: 4MB

Reduce bitwidth

Deeper
More params?
Larger model?

BinaryConnect
[NIPS’15]

Many efforts to improve efficiency

XNORNet
x

=

I OW I

W

O

2

3

0
Sparse weights
Sparse activations

Batching

GoogLeNet
(~89% top5)

22 layers
Params: 6M

Model: 24MB



DNNs Evolving Rapidly

20152012 2013 2014 2016

AlexNet
(~80% Top5)

8 layers
Params: 60M

Model: 240MB

Before 
2000

ResNet
(~94% top5)

152 layers
Params: 60M

Model: 240MB

VGG
(~89% top5)

19 layers
Params: 140M
Model: 500MB

LeNet5
5 layers

Params: 1M
Model: 4MB

Reduce bitwidth

Deeper
More params?
Larger model?

BinaryConnect
[NIPS’15]

Many efforts to improve efficiency

XNORNet
x

=

I OW I

W

O

2

3

0

3 2

Sparse weights
Sparse activations

Batching

GoogLeNet
(~89% top5)

22 layers
Params: 6M

Model: 24MB



DNNs Evolving Rapidly

20152012 2013 2014 2016

AlexNet
(~80% Top5)

8 layers
Params: 60M

Model: 240MB

Before 
2000

SparseCNN
[CVPR’15]

ResNet
(~94% top5)

152 layers
Params: 60M

Model: 240MB

VGG
(~89% top5)

19 layers
Params: 140M
Model: 500MB

LeNet5
5 layers

Params: 1M
Model: 4MB

Spatially 
SparseCNN
[CIFAR-10 
winner ‘14]

Pruning 
[NIPS’15]

TernaryConnect
[ICLR’16]

Reduce bitwidth

Deeper
More params?
Larger model?

BinaryConnect
[NIPS’15]

Many efforts to improve efficiency

XNORNet
x

=

I OW I

W

O

2

3

0

3 2

Sparse weights
Sparse activations

Batching

GoogLeNet
(~89% top5)

22 layers
Params: 6M

Model: 24MB



DNNs Evolving Rapidly

20152012 2013 2014 2016

AlexNet
(~80% Top5)

8 layers
Params: 60M

Model: 240MB

Before 
2000

SparseCNN
[CVPR’15]

ResNet
(~94% top5)

152 layers
Params: 60M

Model: 240MB

VGG
(~89% top5)

19 layers
Params: 140M
Model: 500MB

LeNet5
5 layers

Params: 1M
Model: 4MB

Spatially 
SparseCNN
[CIFAR-10 
winner ‘14]

Pruning 
[NIPS’15]

TernaryConnect
[ICLR’16]

Reduce bitwidth

Deeper
More params?
Larger model?

BinaryConnect
[NIPS’15]

Many efforts to improve efficiency

XNORNet
x

=

I OW I

W

O

2

3

0

3 2

Sparse weights
Sparse activations
Compression

Batching

GoogLeNet
(~89% top5)

22 layers
Params: 6M

Model: 24MB



DNNs Evolving Rapidly

20152012 2013 2014 2016

AlexNet
(~80% Top5)

8 layers
Params: 60M

Model: 240MB

Before 
2000

SparseCNN
[CVPR’15]

ResNet
(~94% top5)

152 layers
Params: 60M

Model: 240MB

VGG
(~89% top5)

19 layers
Params: 140M
Model: 500MB

LeNet5
5 layers

Params: 1M
Model: 4MB

Spatially 
SparseCNN
[CIFAR-10 
winner ‘14]

Pruning 
[NIPS’15]

TernaryConnect
[ICLR’16]

Reduce bitwidth

Deeper
More params?
Larger model?

BinaryConnect
[NIPS’15]

Many efforts to improve efficiency

XNORNet
x

=

I OW

1
13

3

I

W

O

2

3

0

3 2

Sparse weights
Sparse activations
Compression

Batching

GoogLeNet
(~89% top5)

22 layers
Params: 6M

Model: 24MB



DNNs Evolving Rapidly

20152012 2013 2014 2016

AlexNet
(~80% Top5)

8 layers
Params: 60M

Model: 240MB

Before 
2000

SparseCNN
[CVPR’15]

ResNet
(~94% top5)

152 layers
Params: 60M

Model: 240MB

VGG
(~89% top5)

19 layers
Params: 140M
Model: 500MB

LeNet5
5 layers

Params: 1M
Model: 4MB

Spatially 
SparseCNN
[CIFAR-10 
winner ‘14]

Pruning 
[NIPS’15]

TernaryConnect
[ICLR’16]

Reduce bitwidth

Deeper
More params?
Larger model?

BinaryConnect
[NIPS’15]

Many efforts to improve efficiency

XNORNet
x

=

I OW

1
13

3

Shared 
weights

3
1

I

W

O

2

3

0

3 2

Sparse weights
Sparse activations
Compression

Batching

GoogLeNet
(~89% top5)

22 layers
Params: 6M

Model: 24MB



DNNs Evolving Rapidly

20152012 2013 2014 2016

AlexNet
(~80% Top5)

8 layers
Params: 60M

Model: 240MB

Before 
2000

SparseCNN
[CVPR’15]

ResNet
(~94% top5)

152 layers
Params: 60M

Model: 240MB

VGG
(~89% top5)

19 layers
Params: 140M
Model: 500MB

LeNet5
5 layers

Params: 1M
Model: 4MB

Spatially 
SparseCNN
[CIFAR-10 
winner ‘14]

Pruning 
[NIPS’15]

TernaryConnect
[ICLR’16]

Reduce bitwidth

Deeper
More params?
Larger model?

BinaryConnect
[NIPS’15]

Many efforts to improve efficiency

XNORNet
x

=

I OW

1
13

3

Shared 
weights

3
1

I

W

O

2

3

0

3 2

Sparse weights
Sparse activations
Compression

Batching

GoogLeNet
(~89% top5)

22 layers
Params: 6M

Model: 24MB



DNNs Evolving Rapidly

20152012 2013 2014 2016

AlexNet
(~80% Top5)

8 layers
Params: 60M

Model: 240MB

Before 
2000

SparseCNN
[CVPR’15]

ResNet
(~94% top5)

152 layers
Params: 60M

Model: 240MB

VGG
(~89% top5)

19 layers
Params: 140M
Model: 500MB

LeNet5
5 layers

Params: 1M
Model: 4MB

Spatially 
SparseCNN
[CIFAR-10 
winner ‘14]

Pruning 
[NIPS’15]

TernaryConnect
[ICLR’16]

Reduce bitwidth

Deeper
More params?
Larger model?

BinaryConnect
[NIPS’15]

Many efforts to improve efficiency

XNORNet
x

=

I OW

1
13

3

Shared 
weights

3
1

I

W

O

2

3

0

3 2

Sparse weights
Sparse activations
Compression

Batching

GoogLeNet
(~89% top5)

22 layers
Params: 6M

Model: 24MB



DNNs Evolving Rapidly

20152012 2013 2014 2016

AlexNet
(~80% Top5)

8 layers
Params: 60M

Model: 240MB

Before 
2000

SparseCNN
[CVPR’15]

ResNet
(~94% top5)

152 layers
Params: 60M

Model: 240MB

VGG
(~89% top5)

19 layers
Params: 140M
Model: 500MB

LeNet5
5 layers

Params: 1M
Model: 4MB

Spatially 
SparseCNN
[CIFAR-10 
winner ‘14]

Pruning 
[NIPS’15]

TernaryConnect
[ICLR’16]

Reduce bitwidth

Deeper
More params?
Larger model?

BinaryConnect
[NIPS’15]

DeepComp
[ICLR’16]

HashedNets
[ICML’15]

Many efforts to improve efficiency

XNORNet
x

=

I OW

1
13

3

Shared 
weights

3
1

I

W

O

2

3

0

3 2

Sparse weights
Sparse activations
Compression

Batching

GoogLeNet
(~89% top5)

22 layers
Params: 6M

Model: 24MB



DNNs Evolving Rapidly

20152012 2013 2014 2016

AlexNet
(~80% Top5)

8 layers
Params: 60M

Model: 240MB

Before 
2000

SparseCNN
[CVPR’15]

ResNet
(~94% top5)

152 layers
Params: 60M

Model: 240MB

VGG
(~89% top5)

19 layers
Params: 140M
Model: 500MB

LeNet5
5 layers

Params: 1M
Model: 4MB

Spatially 
SparseCNN
[CIFAR-10 
winner ‘14]

Pruning 
[NIPS’15]

TernaryConnect
[ICLR’16]

Reduce bitwidth

Deeper
More params?
Larger model?

BinaryConnect
[NIPS’15]

DeepComp
[ICLR’16]

HashedNets
[ICML’15]

Many efforts to improve efficiency

XNORNet
x

=

I OW

1
13

3

Shared 
weights

3
1

I

W

O

2

3

0

3 2

Sparse weights
Sparse activations
Compression

Compact network

Batching

GoogLeNet
(~89% top5)

22 layers
Params: 6M

Model: 24MB



DNNs Evolving Rapidly

20152012 2013 2014 2016

AlexNet
(~80% Top5)

8 layers
Params: 60M

Model: 240MB

Before 
2000

SparseCNN
[CVPR’15]

ResNet
(~94% top5)

152 layers
Params: 60M

Model: 240MB

VGG
(~89% top5)

19 layers
Params: 140M
Model: 500MB

LeNet5
5 layers

Params: 1M
Model: 4MB

Spatially 
SparseCNN
[CIFAR-10 
winner ‘14]

Pruning 
[NIPS’15]

TernaryConnect
[ICLR’16]

Reduce bitwidth

Deeper
More params?
Larger model?

BinaryConnect
[NIPS’15]

DeepComp
[ICLR’16]

HashedNets
[ICML’15]

Many efforts to improve efficiency

XNORNet

SqueezeNet

x

=

I OW

1
13

3

Shared 
weights

3
1

I

W

O

2

3

0

3 2

Sparse weights
Sparse activations
Compression

Compact network

Batching

GoogLeNet
(~89% top5)

22 layers
Params: 6M

Model: 24MB



DNNs Evolving Rapidly

20152012 2013 2014 2016

AlexNet
(~80% Top5)

8 layers
Params: 60M

Model: 240MB

Before 
2000

SparseCNN
[CVPR’15]

ResNet
(~94% top5)

152 layers
Params: 60M

Model: 240MB

VGG
(~89% top5)

19 layers
Params: 140M
Model: 500MB

LeNet5
5 layers

Params: 1M
Model: 4MB

Spatially 
SparseCNN
[CIFAR-10 
winner ‘14]

Pruning 
[NIPS’15]

TernaryConnect
[ICLR’16]

Reduce bitwidth

Deeper
More params?
Larger model?

BinaryConnect
[NIPS’15]

DeepComp
[ICLR’16]

HashedNets
[ICML’15]

Many efforts to improve efficiency

XNORNet

SqueezeNet

x

=

I OW

1
13

3

Shared 
weights

3
1

I

W

O

2

3

0

3 2

Sparse weights
Sparse activations
Compression

Compact network

All applicable for inference
Some for training

Batching

GoogLeNet
(~89% top5)

22 layers
Params: 6M

Model: 24MB



DNNs Evolving Rapidly

20152012 2013 2014 2016

AlexNet
(~80% Top5)

8 layers
Params: 60M

Model: 240MB

Before 
2000

SparseCNN
[CVPR’15]

ResNet
(~94% top5)

152 layers
Params: 60M

Model: 240MB

VGG
(~89% top5)

19 layers
Params: 140M
Model: 500MB

LeNet5
5 layers

Params: 1M
Model: 4MB

Spatially 
SparseCNN
[CIFAR-10 
winner ‘14]

Pruning 
[NIPS’15]

TernaryConnect
[ICLR’16]

Reduce bitwidth

Deeper
More params?
Larger model?

BinaryConnect
[NIPS’15]

DeepComp
[ICLR’16]

HashedNets
[ICML’15]

Many efforts to improve efficiency

XNORNet

SqueezeNet

SqueezeNet + DeepCompression: 
6-bit, 20-50% sparse

AlexNet accuracy, ~500x smaller (0.5MB)

x

=

I OW

1
13

3

Shared 
weights

3
1

I

W

O

2

3

0

3 2

Sparse weights
Sparse activations
Compression

Compact network

All applicable for inference
Some for training

Batching

GoogLeNet
(~89% top5)

22 layers
Params: 6M

Model: 24MB



DNNs Evolving Rapidly

20152012 2013 2014 2016

AlexNet
(~80% Top5)

8 layers
Params: 60M

Model: 240MB

Before 
2000

SparseCNN
[CVPR’15]

ResNet
(~94% top5)

152 layers
Params: 60M

Model: 240MB

VGG
(~89% top5)

19 layers
Params: 140M
Model: 500MB

LeNet5
5 layers

Params: 1M
Model: 4MB

Spatially 
SparseCNN
[CIFAR-10 
winner ‘14]

Pruning 
[NIPS’15]

TernaryConnect
[ICLR’16]

Reduce bitwidth

Deeper
More params?
Larger model?

BinaryConnect
[NIPS’15]

DeepComp
[ICLR’16]

HashedNets
[ICML’15]

Many efforts to improve efficiency

XNORNet

SqueezeNet

SqueezeNet + DeepCompression: 
6-bit, 20-50% sparse

AlexNet accuracy, ~500x smaller (0.5MB)

XNORnet (1-bit)  ~2% AlexNet

x

=

I OW

1
13

3

Shared 
weights

3
1

I

W

O

2

3

0

3 2

Sparse weights
Sparse activations
Compression

Compact network

All applicable for inference
Some for training

Batching

GoogLeNet
(~89% top5)

22 layers
Params: 6M

Model: 24MB



DNNs Evolving Rapidly

20152012 2013 2014 2016

AlexNet
(~80% Top5)

8 layers
Params: 60M

Model: 240MB

Before 
2000

SparseCNN
[CVPR’15]

ResNet
(~94% top5)

152 layers
Params: 60M

Model: 240MB

VGG
(~89% top5)

19 layers
Params: 140M
Model: 500MB

LeNet5
5 layers

Params: 1M
Model: 4MB

Spatially 
SparseCNN
[CIFAR-10 
winner ‘14]

Pruning 
[NIPS’15]

TernaryConnect
[ICLR’16]

Reduce bitwidth

Deeper
More params?
Larger model?

BinaryConnect
[NIPS’15]

DeepComp
[ICLR’16]

HashedNets
[ICML’15]

Many efforts to improve efficiency

XNORNet

SqueezeNet

SqueezeNet + DeepCompression: 
6-bit, 20-50% sparse

AlexNet accuracy, ~500x smaller (0.5MB)

XNORnet (1-bit)  ~2% AlexNet

~3.5 
years

x

=

I OW

1
13

3

Shared 
weights

3
1

I

W

O

2

3

0

3 2

Sparse weights
Sparse activations
Compression

Compact network

All applicable for inference
Some for training

Batching

GoogLeNet
(~89% top5)

22 layers
Params: 6M

Model: 24MB



DNNs Evolving Rapidly

20152012 2013 2014 2016

AlexNet
(~80% Top5)

8 layers
Params: 60M

Model: 240MB

Before 
2000

SparseCNN
[CVPR’15]

ResNet
(~94% top5)

152 layers
Params: 60M

Model: 240MB

VGG
(~89% top5)

19 layers
Params: 140M
Model: 500MB

LeNet5
5 layers

Params: 1M
Model: 4MB

Spatially 
SparseCNN
[CIFAR-10 
winner ‘14]

Pruning 
[NIPS’15]

TernaryConnect
[ICLR’16]

Reduce bitwidth

Deeper
More params?
Larger model?

BinaryConnect
[NIPS’15]

DeepComp
[ICLR’16]

HashedNets
[ICML’15]

Many efforts to improve efficiency

XNORNet

SqueezeNet

SqueezeNet + DeepCompression: 
6-bit, 20-50% sparse

AlexNet accuracy, ~500x smaller (0.5MB)

XNORnet (1-bit)  ~2% AlexNet

~3.5 
years

x

=

I OW

1
13

3

Shared 
weights

3
1

I

W

O

2

3

0

3 2

Sparse weights
Sparse activations
Compression

Compact network

All applicable for inference
Some for training

Batching

GoogLeNet
(~89% top5)

22 layers
Params: 6M

Model: 24MB

TernaryNet (2-bit, 50% sparse)  ~1% ResNet



DNNs Evolving Rapidly

20152012 2013 2014 2016

AlexNet
(~80% Top5)

8 layers
Params: 60M

Model: 240MB

Before 
2000

SparseCNN
[CVPR’15]

ResNet
(~94% top5)

152 layers
Params: 60M

Model: 240MB

VGG
(~89% top5)

19 layers
Params: 140M
Model: 500MB

LeNet5
5 layers

Params: 1M
Model: 4MB

Spatially 
SparseCNN
[CIFAR-10 
winner ‘14]

Pruning 
[NIPS’15]

TernaryConnect
[ICLR’16]

Reduce bitwidth

Deeper
More params?
Larger model?

BinaryConnect
[NIPS’15]

DeepComp
[ICLR’16]

HashedNets
[ICML’15]

Many efforts to improve efficiency

XNORNet

SqueezeNet

SqueezeNet + DeepCompression: 
6-bit, 20-50% sparse

AlexNet accuracy, ~500x smaller (0.5MB)

XNORnet (1-bit)  ~2% AlexNet

~3.5 
years

x

=

I OW

1
13

3

Shared 
weights

3
1

I

W

O

2

3

0

3 2

Sparse weights
Sparse activations
Compression

Compact network

All applicable for inference
Some for training

Batching

GoogLeNet
(~89% top5)

22 layers
Params: 6M

Model: 24MB

TernaryNet (2-bit, 50% sparse)  ~1% ResNet

~1
year



DNNs Evolving Rapidly

20152012 2013 2014 2016

AlexNet
(~80% Top5)

8 layers
Params: 60M

Model: 240MB

Before 
2000

SparseCNN
[CVPR’15]

ResNet
(~94% top5)

152 layers
Params: 60M

Model: 240MB

VGG
(~89% top5)

19 layers
Params: 140M
Model: 500MB

LeNet5
5 layers

Params: 1M
Model: 4MB

Spatially 
SparseCNN
[CIFAR-10 
winner ‘14]

Pruning 
[NIPS’15]

TernaryConnect
[ICLR’16]

Reduce bitwidth

Deeper
More params?
Larger model?

BinaryConnect
[NIPS’15]

DeepComp
[ICLR’16]

HashedNets
[ICML’15]

Many efforts to improve efficiency

XNORNet

SqueezeNet

Next-gen DNNs: more irregular with custom data types

SqueezeNet + DeepCompression: 
6-bit, 20-50% sparse

AlexNet accuracy, ~500x smaller (0.5MB)

XNORnet (1-bit)  ~2% AlexNet

~3.5 
years

x

=

I OW

1
13

3

Shared 
weights

3
1

I

W

O

2

3

0

3 2

Sparse weights
Sparse activations
Compression

Compact network

All applicable for inference
Some for training

Batching

GoogLeNet
(~89% top5)

22 layers
Params: 6M

Model: 24MB

TernaryNet (2-bit, 50% sparse)  ~1% ResNet

~1
year



So far, high-end GPUs are gaining traction in DNNs



So far, high-end GPUs are gaining traction in DNNs

Lots of FLOP/s
TFLOP/s (FP32)



So far, high-end GPUs are gaining traction in DNNs

Lots of FLOP/s
TFLOP/s (FP32)

On-chip RAMs
MBs



So far, high-end GPUs are gaining traction in DNNs

Lots of FLOP/s
TFLOP/s (FP32)

On-chip RAMs
MBs

Memory BW
GB/s



So far, high-end GPUs are gaining traction in DNNs

Lots of FLOP/s
TFLOP/s (FP32)

On-chip RAMs
MBs

Memory BW
GB/s

But, Power Hungry

~200+ W



So far, high-end GPUs are gaining traction in DNNs

Programmable

cuDNN

cuBLAS

Lots of FLOP/s
TFLOP/s (FP32)

On-chip RAMs
MBs

Memory BW
GB/s

But, Power Hungry

~200+ W



So far, high-end GPUs are gaining traction in DNNs

Programmable

cuDNN

cuBLAS

Integrated

Lots of FLOP/s
TFLOP/s (FP32)

On-chip RAMs
MBs

Memory BW
GB/s

But, Power Hungry

~200+ W



So far, high-end GPUs are gaining traction in DNNs

Programmable

cuDNN

cuBLAS

Integrated

Lots of FLOP/s
TFLOP/s (FP32)

On-chip RAMs
MBs

Memory BW
GB/s

But, Power Hungry

~200+ W

High achievable FLOP/s on GEMM
(for big enough regular dense matrix, using 

native data types – FP32, FP16, INT8)



So far, high-end GPUs are gaining traction in DNNs

Programmable

cuDNN

cuBLAS

Integrated

Lots of FLOP/s
TFLOP/s (FP32)

On-chip RAMs
MBs

Memory BW
GB/s

But, Power Hungry

~200+ W

How much GPU’s FLOPs can be utilized in next-gen DNNs?

High achievable FLOP/s on GEMM
(for big enough regular dense matrix, using 

native data types – FP32, FP16, INT8)



Meanwhile, FPGAs becoming much more capable



Meanwhile, FPGAs becoming much more capable
FLOPs

TFLOP/s (FP32)

A10

M
X

G
X

S10



Meanwhile, FPGAs becoming much more capable
FLOPs

TFLOP/s (FP32)

A10

M
X

G
X

S10

On-chip RAMs
MBs

A10

M
X

G
X

S10



Meanwhile, FPGAs becoming much more capable
Mem BW

GB/s

A10

S10-MX

FLOPs
TFLOP/s (FP32)

A10

M
X

G
X

S10

On-chip RAMs
MBs

A10

M
X

G
X

S10



Meanwhile, FPGAs becoming much more capable
Higher Freq

2x core frequency 

Mem BW
GB/s

A10

S10-MX

FLOPs
TFLOP/s (FP32)

A10

M
X

G
X

S10

On-chip RAMs
MBs

A10

M
X

G
X

S10



Power Efficient

10s-100s W

Meanwhile, FPGAs becoming much more capable
Higher Freq

2x core frequency 

Mem BW
GB/s

A10

S10-MX

FLOPs
TFLOP/s (FP32)

A10

M
X

G
X

S10

On-chip RAMs
MBs

A10

M
X

G
X

S10



Power Efficient

10s-100s W

Meanwhile, FPGAs becoming much more capable

High-Level Programming

A++

Higher Freq

2x core frequency 

Mem BW
GB/s

A10

S10-MX

FLOPs
TFLOP/s (FP32)

A10

M
X

G
X

S10

On-chip RAMs
MBs

A10

M
X

G
X

S10



Power Efficient

10s-100s W

Meanwhile, FPGAs becoming much more capable

High-Level Programming

A++

Higher Freq

2x core frequency 

Mem BW
GB/s

A10

S10-MX

More Integrated

Xeon+FPGA Discrete cards

FLOPs
TFLOP/s (FP32)

A10

M
X

G
X

S10

On-chip RAMs
MBs

A10

M
X

G
X

S10



Power Efficient

10s-100s W

Meanwhile, FPGAs becoming much more capable

High-Level Programming

A++

Higher Freq

2x core frequency 

Upcoming Stratix 10 will be more competitive to GPUs

Mem BW
GB/s

A10

S10-MX

More Integrated

Xeon+FPGA Discrete cards

FLOPs
TFLOP/s (FP32)

A10

M
X

G
X

S10

On-chip RAMs
MBs

A10

M
X

G
X

S10



FPGA fabric is great for irregular (and regular) computation

Figures courtesy of Gordon Chiu



FPGA fabric is great for irregular (and regular) computation

X +1000s of hard DSPs (floating-point units)

Figures courtesy of Gordon Chiu



FPGA fabric is great for irregular (and regular) computation

X +1000s of hard DSPs (floating-point units)

1000s of Hard “M20K” SRAMs (2.5KB/SRAM)

Figures courtesy of Gordon Chiu



FPGA fabric is great for irregular (and regular) computation

X +1000s of hard DSPs (floating-point units)

1000s of Hard “M20K” SRAMs (2.5KB/SRAM)

Sea of Programmable Logic and Routing

Figures courtesy of Gordon Chiu



FPGA fabric is great for irregular (and regular) computation

X +1000s of hard DSPs (floating-point units)

1000s of Hard “M20K” SRAMs (2.5KB/SRAM)

Sea of Programmable Logic and Routing

Extreme degree of customizations

Figures courtesy of Gordon Chiu



FPGA fabric is great for irregular (and regular) computation

X +1000s of hard DSPs (floating-point units)

1000s of Hard “M20K” SRAMs (2.5KB/SRAM)

Sea of Programmable Logic and Routing

Extreme degree of customizations

Arbitrary bitwidth, mix bitwidths, etc

Figures courtesy of Gordon Chiu



FPGA fabric is great for irregular (and regular) computation

X +1000s of hard DSPs (floating-point units)

1000s of Hard “M20K” SRAMs (2.5KB/SRAM)

Sea of Programmable Logic and Routing

Extreme degree of customizations

Arbitrary SRAMs compositions (spad, $, fifo, ..) 

Arbitrary bitwidth, mix bitwidths, etc

Figures courtesy of Gordon Chiu



FPGA fabric is great for irregular (and regular) computation

1000s of hard DSPs (floating-point units)

1000s of Hard “M20K” SRAMs (2.5KB/SRAM)

Sea of Programmable Logic and Routing

Extreme degree of customizations

Arbitrary SRAMs compositions (spad, $, fifo, ..) 

Arbitrary bitwidth, mix bitwidths, etc

Arbitrary DNN architectures

X

+

X

+

X

+

X

+ M20K

M20K

M20K

M20K

Figures courtesy of Gordon Chiu



FPGA fabric is great for irregular (and regular) computation

1000s of hard DSPs (floating-point units)

1000s of Hard “M20K” SRAMs (2.5KB/SRAM)

Sea of Programmable Logic and Routing

Extreme degree of customizations

Arbitrary SRAMs compositions (spad, $, fifo, ..) 

Arbitrary bitwidth, mix bitwidths, etc

Arbitrary DNN architectures

X

+

X

+

X

+

X

+ M20K

M20K

M20K

M20K

Figures courtesy of Gordon Chiu

FPGAs well positioned for deep learning



This work: compare high-end GPU vs. FPGA for DNNs

• Collected measurements on latest high-end GPU (Titan X Pascal)

• Compared against projections for upcoming Stratix 10 FPGA

• Study 1: compare various GEMMs used by next-gen DNNs

• Study 2: case study on ternarized ResNet



DNN accelerator template for FPGA used in our studies

On-Chip Data 
Mgr (ODM)

Mem Data 
Mgr (MDM)

PE

…

GEMM Unit for
Conv/FC Layers

On-Chip 
Data Mgr

(ODM)

PE

Misc
Layers

Unit 
(MLU)

(ReLu,
Pooling, 

Batch 
Norm)

PE

PE

… …

…

…

Top-level

Sparse
Mgt

Sparse Mgt



DNN accelerator template for FPGA used in our studies

On-Chip Data 
Mgr (ODM)

Mem Data 
Mgr (MDM)

PE

…

GEMM Unit for
Conv/FC Layers

On-Chip 
Data Mgr

(ODM)

PE

Misc
Layers

Unit 
(MLU)

(ReLu,
Pooling, 

Batch 
Norm)

PE

PE

… …

…

…

Top-level
PE

PE

PE

PE

Systolic Array 

GEMM

PE

PE

PE

PE

Broadcast 

GEMM

Sparse
Mgt

Sparse Mgt



DNN accelerator template for FPGA used in our studies

On-Chip Data 
Mgr (ODM)

Mem Data 
Mgr (MDM)

PE

…

GEMM Unit for
Conv/FC Layers

On-Chip 
Data Mgr

(ODM)

PE

Misc
Layers

Unit 
(MLU)

(ReLu,
Pooling, 

Batch 
Norm)

PE

PE

… …

…

…

Top-level
PE

PE

PE

PE

Systolic Array 

GEMM

PE

PE

PE

PE

Broadcast 

GEMM

MACs ACCs

din0

PE

din1

PE for dense GEMM

dout
Sparse

Mgt

Sparse Mgt

MACs

ACCs

PE

Zero-skip 
Scheduler

din0 din1

dout

PE for sparse GEMM



DNN accelerator template for FPGA used in our studies

On-Chip Data 
Mgr (ODM)

Mem Data 
Mgr (MDM)

PE

…

GEMM Unit for
Conv/FC Layers

On-Chip 
Data Mgr

(ODM)

PE

Misc
Layers

Unit 
(MLU)

(ReLu,
Pooling, 

Batch 
Norm)

PE

PE

… …

…

…

Top-level
PE

PE

PE

PE

Systolic Array 

GEMM

PE

PE

PE

PE

Broadcast 

GEMM

MACs ACCs

din0

PE

din1

PE for dense GEMM

dout
Sparse

Mgt

Sparse Mgt

xnor

LT0

din0 din1

LTm

split

…

reduce

Binarized
Dot Engine

b
cn

t

dout

Binarized Dot

MACs

ACCs

PE

Zero-skip 
Scheduler

din0 din1

dout

PE for sparse GEMM



DNN accelerator template for FPGA used in our studies

On-Chip Data 
Mgr (ODM)

Mem Data 
Mgr (MDM)

PE

…

GEMM Unit for
Conv/FC Layers

On-Chip 
Data Mgr

(ODM)

PE

Misc
Layers

Unit 
(MLU)

(ReLu,
Pooling, 

Batch 
Norm)

PE

PE

… …

…

…

Top-level
PE

PE

PE

PE

Systolic Array 

GEMM

PE

PE

PE

PE

Broadcast 

GEMM

MACs ACCs

din0

PE

din1

PE for dense GEMM

dout
Sparse

Mgt

Sparse Mgt

xnor

LT0

din0 din1

LTm

split

…

reduce

Binarized
Dot Engine

b
cn

t

dout

Binarized Dot

MACs

ACCs

PE

Zero-skip 
Scheduler

din0 din1

dout

PE for sparse GEMM

Allows studying various 

design instances



Methodology
FPGAs and GPU under study

Evaluation

• GPU: used known library (cuBLAS) or framework (Torch with cuDNN)

• FPGA: estimated using Quartus and PowerPlay

• For Stratix 10, we use Quartus Early Beta release. Note that its quality is not 
necessarily reflective of future more mature releases of Quartus for Stratix 10

Arria 10 1150 FPGA Stratix 10 2800 FPGA
TitanX Pascal

GPU

Peak FP32 TFLOPs 1.36 9.2 11

On-chip RAMs
6.6 MB 

(M20Ks)
28.6 MB 
(M20Ks)

13.5 MB 
(RF, SM, L2)

Memory BW Assume same as Titan X Assume same as Titan X 480 GB/s



Study 1 results: Dense GEMM

FP32 TOP/s FP32 GOP/s/Watt

“Classic” FP32 GEMM

Titan X 
GPU 

(peak)
Titan X 

GPU 
(peak)



Study 1 results: Dense GEMM

FP32 TOP/s FP32 GOP/s/Watt

“Classic” FP32 GEMM

Titan X 
GPU 

(peak)
Titan X 

GPU 
(peak)

For “classic” FP32 Dense GEMM, S10 

FPGA is catching up to GPU in 

performance, and better in perf/Watt



Study 1 results: Dense GEMM

FP32 TOP/s FP32 GOP/s/Watt

“Classic” FP32 GEMM

Titan X 
GPU 

(peak)
Titan X 

GPU 
(peak)

TOP/s GOP/s/Watt

Low precision (INT6, INT8) GEMM

Titan X 
GPU 
Int8 
peak

Titan X 
GPU 
Int8 
peak

For “classic” FP32 Dense GEMM, S10 

FPGA is catching up to GPU in 

performance, and better in perf/Watt



Study 1 results: Dense GEMM

FP32 TOP/s FP32 GOP/s/Watt

“Classic” FP32 GEMM

Titan X 
GPU 

(peak)
Titan X 

GPU 
(peak)

TOP/s GOP/s/Watt

Low precision (INT6, INT8) GEMM

Titan X 
GPU 
Int8 
peak

Titan X 
GPU 
Int8 
peak

For “classic” FP32 Dense GEMM, S10 

FPGA is catching up to GPU in 

performance, and better in perf/Watt

For low precision 6bit, S10 FPGA can 

offer better performance, and even 

better perf/watt. 



Study 1 results: Very low precision 1bit (Binarized) GEMM

=

W
-1 +1

-1 -1

+1 +1

3

-1

-1

O
-1

+1 x

I
+1

-1

-1+1

(-1.-1)+(1.1)+(1.1)

(-1.-1)+(1.-1)+(1.-1)
(-1.1)+(1.1)+(1.-1)

=

Matrix x Vector, with +1 or -1

Neural networks with 
parameters of +1 or -1



Study 1 results: Very low precision 1bit (Binarized) GEMM

=

W
-1 +1

-1 -1

+1 +1

3

-1

-1

O
-1

+1 x

I
+1

-1

-1+1

(-1.-1)+(1.1)+(1.1)

(-1.-1)+(1.-1)+(1.-1)
(-1.1)+(1.1)+(1.-1)

=

Matrix x Vector, with +1 or -1

bcnt(xnor(011,011))
bcnt(xnor(011,000))

bcnt(xnor(011,110))

Binarized Matrix x Vector

=

W
0 1

0 0

1 1

0

1 x

I
1

0

01

3

-1

-1

O

=

Neural networks with 
parameters of +1 or -1



Study 1 results: Very low precision 1bit (Binarized) GEMM

=

W
-1 +1

-1 -1

+1 +1

3

-1

-1

O
-1

+1 x

I
+1

-1

-1+1

(-1.-1)+(1.1)+(1.1)

(-1.-1)+(1.-1)+(1.-1)
(-1.1)+(1.1)+(1.-1)

=

Matrix x Vector, with +1 or -1

bcnt(xnor(011,011))
bcnt(xnor(011,000))

bcnt(xnor(011,110))

Binarized Matrix x Vector

=

W
0 1

0 0

1 1

0

1 x

I
1

0

01

3

-1

-1

O

=

Neural networks with 
parameters of +1 or -1

Used optimized GPU code and 
FPGA design from [FPT’16]



Study 1 results: Very low precision 1bit (Binarized) GEMM
TOP/s

Titan X GPU 
theoretical 

peak 
(87.7TOP/s)

Titan X GPU 
achieved 

(45.6TOP/s)

=

W
-1 +1

-1 -1

+1 +1

3

-1

-1

O
-1

+1 x

I
+1

-1

-1+1

(-1.-1)+(1.1)+(1.1)

(-1.-1)+(1.-1)+(1.-1)
(-1.1)+(1.1)+(1.-1)

=

Matrix x Vector, with +1 or -1

bcnt(xnor(011,011))
bcnt(xnor(011,000))

bcnt(xnor(011,110))

Binarized Matrix x Vector

=

W
0 1

0 0

1 1

0

1 x

I
1

0

01

3

-1

-1

O

=

Neural networks with 
parameters of +1 or -1

Used optimized GPU code and 
FPGA design from [FPT’16]



Study 1 results: Very low precision 1bit (Binarized) GEMM
TOP/s

Titan X GPU 
theoretical 

peak 
(87.7TOP/s)

Titan X GPU 
achieved 

(45.6TOP/s)

GOP/s/Watt Titan X GPU 
theoretical peak 
(399TOP/s/W)

Titan X GPU 
achieved 

(295TOP/s/W)

=

W
-1 +1

-1 -1

+1 +1

3

-1

-1

O
-1

+1 x

I
+1

-1

-1+1

(-1.-1)+(1.1)+(1.1)

(-1.-1)+(1.-1)+(1.-1)
(-1.1)+(1.1)+(1.-1)

=

Matrix x Vector, with +1 or -1

bcnt(xnor(011,011))
bcnt(xnor(011,000))

bcnt(xnor(011,110))

Binarized Matrix x Vector

=

W
0 1

0 0

1 1

0

1 x

I
1

0

01

3

-1

-1

O

=

Neural networks with 
parameters of +1 or -1

Used optimized GPU code and 
FPGA design from [FPT’16]



Study 1 results: Very low precision 1bit (Binarized) GEMM
TOP/s

Titan X GPU 
theoretical 

peak 
(87.7TOP/s)

Titan X GPU 
achieved 

(45.6TOP/s)

GOP/s/Watt Titan X GPU 
theoretical peak 
(399TOP/s/W)

Titan X GPU 
achieved 

(295TOP/s/W)

=

W
-1 +1

-1 -1

+1 +1

3

-1

-1

O
-1

+1 x

I
+1

-1

-1+1

(-1.-1)+(1.1)+(1.1)

(-1.-1)+(1.-1)+(1.-1)
(-1.1)+(1.1)+(1.-1)

=

Matrix x Vector, with +1 or -1

bcnt(xnor(011,011))
bcnt(xnor(011,000))

bcnt(xnor(011,110))

Binarized Matrix x Vector

=

W
0 1

0 0

1 1

0

1 x

I
1

0

01

3

-1

-1

O

=

Neural networks with 
parameters of +1 or -1

S10 FPGA can offer significantly better performance than Titan X GPU

Used optimized GPU code and 
FPGA design from [FPT’16]



Study 1 results: Sparse GEMM

=

W
0.2 0

0 0.3

0.1 0

O
0.1

0 x

I
0.1

0

00.2

(0.1x0.2)+(0x0)+(0.2x0.1)

(0.1x0)+(0x0.3)+(0.2x0)
(0.1x0.1)+(0x0)+(0.2x0)

=

Sparse NN



Study 1 results: Sparse GEMM

=

W
0.2 0

0 0.3

0.1 0

O
0.1

0 x

I
0.1

0

00.2

(0.1x0.2)+(0x0)+(0.2x0.1)

(0.1x0)+(0x0.3)+(0.2x0)
(0.1x0.1)+(0x0)+(0.2x0)

=

Sparse NN



Study 1 results: Sparse GEMM

=

W
0.2 0

0 0.3

0.1 0

O
0.1

0 x

I
0.1

0

00.2

(0.1x0.2)+(0x0)+(0.2x0.1)

(0.1x0)+(0x0.3)+(0.2x0)
(0.1x0.1)+(0x0)+(0.2x0)

=

Sparse NN

mul

IW

add

out

acc_in

Zero-skip 
scheduler

Sparse
W and/or I

HW skips 
computation on 

zero values



Study 1 results: Sparse GEMM Sparse FP32 GEMM 
(at 85% sparsity based on AlexNet)

TOP/s

Titan X GPU 
achieved 
(dense, 
FP32)

GOP/s/Watt

Titan X GPU 
achieved 
(dense, 
FP32)

=

W
0.2 0

0 0.3

0.1 0

O
0.1

0 x

I
0.1

0

00.2

(0.1x0.2)+(0x0)+(0.2x0.1)

(0.1x0)+(0x0.3)+(0.2x0)
(0.1x0.1)+(0x0)+(0.2x0)

=

Sparse NN

mul

IW

add

out

acc_in

Zero-skip 
scheduler

Sparse
W and/or I

HW skips 
computation on 

zero values



Study 1 results: Sparse GEMM Sparse FP32 GEMM 
(at 85% sparsity based on AlexNet)

TOP/s

Titan X GPU 
achieved 
(dense, 
FP32)

GOP/s/Watt

Titan X GPU 
achieved 
(dense, 
FP32)

=

W
0.2 0

0 0.3

0.1 0

O
0.1

0 x

I
0.1

0

00.2

(0.1x0.2)+(0x0)+(0.2x0.1)

(0.1x0)+(0x0.3)+(0.2x0)
(0.1x0.1)+(0x0)+(0.2x0)

=

Sparse NN

mul

IW

add

out

acc_in

Zero-skip 
scheduler

Sparse
W and/or I

HW skips 
computation on 

zero values

Also tried zero-skipping in GPU, which performed 
worse than dense. See paper.



Study 1 results: Sparse GEMM Sparse FP32 GEMM 
(at 85% sparsity based on AlexNet)

TOP/s

Titan X GPU 
achieved 
(dense, 
FP32)

GOP/s/Watt

Titan X GPU 
achieved 
(dense, 
FP32)

=

W
0.2 0

0 0.3

0.1 0

O
0.1

0 x

I
0.1

0

00.2

(0.1x0.2)+(0x0)+(0.2x0.1)

(0.1x0)+(0x0.3)+(0.2x0)
(0.1x0.1)+(0x0)+(0.2x0)

=

Sparse NN

mul

IW

add

out

acc_in

Zero-skip 
scheduler

Sparse
W and/or I

HW skips 
computation on 

zero values

Also tried zero-skipping in GPU, which performed 
worse than dense. See paper.

FPGA can offer better performance and 

efficiency than GPU, depending on sparsity 

and frequency achieved.



Study 2: Ternary ResNet Case Study



Study 2: Ternary ResNet Case Study

=

W
-1 0

0 -1

+1 0

O
0.1

0 x

I
+1

-1

00.2

(0.1x-1)+(0x0)+(0.2x1)

(0.1x0)+(0x-1)+(0.2x-1)
(0.1x1)+(0x0)+(0.2x0)

=

Ternary NN: neural net with 
weights of +1,-1,0



Study 2: Ternary ResNet Case Study

=

W
-1 0

0 -1

+1 0

O
0.1

0 x

I
+1

-1

00.2

(0.1x-1)+(0x0)+(0.2x1)

(0.1x0)+(0x-1)+(0.2x-1)
(0.1x1)+(0x0)+(0.2x0)

=

Ternary NN: neural net with 
weights of +1,-1,0



Study 2: Ternary ResNet Case Study

=

W
-1 0

0 -1

+1 0

O
0.1

0 x

I
+1

-1

00.2

(0.1x-1)+(0x0)+(0.2x1)

(0.1x0)+(0x-1)+(0.2x-1)
(0.1x1)+(0x0)+(0.2x0)

=

Ternary NN: neural net with 
weights of +1,-1,0

sign

W I

add

out

acc_in

Zero-skip 
scheduler

Sparse I and/or 
ternary W

Skip computation 
on zero values, 
and no multiply



Study 2: Ternary ResNet Case Study

=

W
-1 0

0 -1

+1 0

O
0.1

0 x

I
+1

-1

00.2

(0.1x-1)+(0x0)+(0.2x1)

(0.1x0)+(0x-1)+(0.2x-1)
(0.1x1)+(0x0)+(0.2x0)

=

Ternary NN: neural net with 
weights of +1,-1,0

sign

W I

add

out

acc_in

Zero-skip 
scheduler

Sparse I and/or 
ternary W

Skip computation 
on zero values, 
and no multiply

ImageNet Accuracy



Study 2: Ternary ResNet Case Study

=

W
-1 0

0 -1

+1 0

O
0.1

0 x

I
+1

-1

00.2

(0.1x-1)+(0x0)+(0.2x1)

(0.1x0)+(0x-1)+(0.2x-1)
(0.1x1)+(0x0)+(0.2x0)

=

Ternary NN: neural net with 
weights of +1,-1,0

sign

W I

add

out

acc_in

Zero-skip 
scheduler

Sparse I and/or 
ternary W

Skip computation 
on zero values, 
and no multiply

Ternary ResNet offers 
state-of-the-art 

accuracy [ICASSP’17]

ImageNet Accuracy



Study 2: Ternary ResNet Case Study

=

W
-1 0

0 -1

+1 0

O
0.1

0 x

I
+1

-1

00.2

(0.1x-1)+(0x0)+(0.2x1)

(0.1x0)+(0x-1)+(0.2x-1)
(0.1x1)+(0x0)+(0.2x0)

=

Ternary NN: neural net with 
weights of +1,-1,0

sign

W I

add

out

acc_in

Zero-skip 
scheduler

Sparse I and/or 
ternary W

Skip computation 
on zero values, 
and no multiply

Ternary ResNet offers 
state-of-the-art 

accuracy [ICASSP’17]

ImageNet Accuracy

We target Resnet-50-
TNN in this study



Results Speedup vs. dense design

1.994x weighted 
average speedups

LayerID

Per layer speedup varies 

depends on sparsity



Results

TOP/s GOP/s/Watt

Titan X GPU 
theoretical peak

Titan X GPU 
measured on 

Torch, batch64

Titan X GPU theoretical 
peak

Titan X GPU measured 
on Torch, batch64

Speedup vs. dense design

1.994x weighted 
average speedups

LayerID

Per layer speedup varies 

depends on sparsity

S10 FPGA performs 

better, across all 

frequency targets 



More Opportunities for FPGAs

Various further optimizations & customizations for deep learning

 e.g., math transforms (FFT, Winograd), further quantizations, compression schemes

Other irregular applications

 e.g., other classes of ML, apps outside of ML

Latency sensitive applications

 e.g., ADAS, industrial usages



So, can FPGAs beat GPUs for next-gen DNNs?

For classic DNNs using 32b dense GEMMs, FPGAs catching up to GPUs

 But next-gen DNNs may not rely purely on big dense 32b GEMM anymore



So, can FPGAs beat GPUs for next-gen DNNs?

For classic DNNs using 32b dense GEMMs, FPGAs catching up to GPUs

 But next-gen DNNs may not rely purely on big dense 32b GEMM anymore

For upcoming more irregular DNNs, FPGAs show great promise

 Arbitrary data types (2b, 1b, ..), sparsity



So, can FPGAs beat GPUs for next-gen DNNs?

For classic DNNs using 32b dense GEMMs, FPGAs catching up to GPUs

 But next-gen DNNs may not rely purely on big dense 32b GEMM anymore

For upcoming more irregular DNNs, FPGAs show great promise

 Arbitrary data types (2b, 1b, ..), sparsity

Current trends favor FPGAs. Can we do even better by purposely 

formulating deep learning to take full advantage of FPGA strengths? 




