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Lots of FLOP/s
TFLOP/s (FP32)

On-chip RAMs
MBs

Memory BW
GB/s

But, Power Hungry

~200+ W

How much GPU’s FLOPs can be utilized in next-gen DNNs?

High achievable FLOP/s on GEMM
(for big enough regular dense matrix, using 

native data types – FP32, FP16, INT8)
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FPGAs well positioned for deep learning



This work: compare high-end GPU vs. FPGA for DNNs

• Collected measurements on latest high-end GPU (Titan X Pascal)

• Compared against projections for upcoming Stratix 10 FPGA

• Study 1: compare various GEMMs used by next-gen DNNs

• Study 2: case study on ternarized ResNet
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Methodology
FPGAs and GPU under study

Evaluation

• GPU: used known library (cuBLAS) or framework (Torch with cuDNN)

• FPGA: estimated using Quartus and PowerPlay

• For Stratix 10, we use Quartus Early Beta release. Note that its quality is not 
necessarily reflective of future more mature releases of Quartus for Stratix 10

Arria 10 1150 FPGA Stratix 10 2800 FPGA
TitanX Pascal

GPU

Peak FP32 TFLOPs 1.36 9.2 11

On-chip RAMs
6.6 MB 

(M20Ks)
28.6 MB 
(M20Ks)

13.5 MB 
(RF, SM, L2)

Memory BW Assume same as Titan X Assume same as Titan X 480 GB/s



Study 1 results: Dense GEMM

FP32 TOP/s FP32 GOP/s/Watt

“Classic” FP32 GEMM

Titan X 
GPU 

(peak)
Titan X 

GPU 
(peak)



Study 1 results: Dense GEMM

FP32 TOP/s FP32 GOP/s/Watt

“Classic” FP32 GEMM

Titan X 
GPU 

(peak)
Titan X 

GPU 
(peak)

For “classic” FP32 Dense GEMM, S10 

FPGA is catching up to GPU in 

performance, and better in perf/Watt



Study 1 results: Dense GEMM

FP32 TOP/s FP32 GOP/s/Watt

“Classic” FP32 GEMM

Titan X 
GPU 

(peak)
Titan X 

GPU 
(peak)

TOP/s GOP/s/Watt

Low precision (INT6, INT8) GEMM

Titan X 
GPU 
Int8 
peak

Titan X 
GPU 
Int8 
peak

For “classic” FP32 Dense GEMM, S10 

FPGA is catching up to GPU in 

performance, and better in perf/Watt



Study 1 results: Dense GEMM

FP32 TOP/s FP32 GOP/s/Watt

“Classic” FP32 GEMM

Titan X 
GPU 

(peak)
Titan X 

GPU 
(peak)

TOP/s GOP/s/Watt

Low precision (INT6, INT8) GEMM

Titan X 
GPU 
Int8 
peak

Titan X 
GPU 
Int8 
peak

For “classic” FP32 Dense GEMM, S10 

FPGA is catching up to GPU in 

performance, and better in perf/Watt

For low precision 6bit, S10 FPGA can 

offer better performance, and even 

better perf/watt. 
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FPGA design from [FPT’16]
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We target Resnet-50-
TNN in this study
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Speedup vs. dense design

1.994x weighted 
average speedups

LayerID

Per layer speedup varies 

depends on sparsity

S10 FPGA performs 

better, across all 

frequency targets 



More Opportunities for FPGAs

Various further optimizations & customizations for deep learning

 e.g., math transforms (FFT, Winograd), further quantizations, compression schemes

Other irregular applications

 e.g., other classes of ML, apps outside of ML

Latency sensitive applications

 e.g., ADAS, industrial usages
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So, can FPGAs beat GPUs for next-gen DNNs?

For classic DNNs using 32b dense GEMMs, FPGAs catching up to GPUs

 But next-gen DNNs may not rely purely on big dense 32b GEMM anymore

For upcoming more irregular DNNs, FPGAs show great promise

 Arbitrary data types (2b, 1b, ..), sparsity

Current trends favor FPGAs. Can we do even better by purposely 

formulating deep learning to take full advantage of FPGA strengths? 




