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Target Platform:	CPU+FPGA+	Shared	Memory
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Key	Attributes:
1. CPU	threads	and	FPGA	share	large virtual	address	space.
2. Cache	line	accessible	through high speed interconnection.
Big	advantage	for	streaming	applications;	overlap data transfer and
processing	times		=>	P-M	software	pipeline

CPU-FPGA Shared Memory Model Intel QuickAssist QPI-FPGA Platform
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Problem Definition

• Given an arbitrary trained CNN architecture and
resource constrains, map the forward path
(inference) onto the CPU-FPGA shared memory
system, such that the total execution time is
minimized.
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State	of	the	art	on FPGA
• Convolutional layer occupies over 90% of the total

computation time. Most previous work focus on using
highly optimized hardware to accelerate the
convolutional layer.

• Direct convolution: Adder Tree based convolver
– Data parallelism is limited by the tree structure
– Throughput is limited
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FFT based approach

• 2D convolution can be computed efficiently using FFT.
• In signal processing, Overlap-and-Add (OaA) is an
efficient way to compute the discrete convolution of
a long signal with a small kernel.

• Parameter definition
– Input feature map: 𝑁"#×𝑁"#×𝐷"#
– Output feature map: 𝑁&'(×𝑁&'(×𝐷&'(
– Kernel: 𝐹×𝐹×𝐷"#×𝐷&'(
– FFT size: 𝑃, tile size: 𝐿
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Convolutional Layer in Frequency Domain
• Overlap-and-Add (OaA)

– Partition the input feature map to 𝐿	×	𝐿 tiles
– Perform 2D FFT on	each 𝐿	×	𝐿 tile of input feature maps and kernels
– Perform Hadamard (Dot) Product of each input feature map tile and

corresponding kernel map
– Sum the result and perform 2D IFFT on each output feature map tile
– Perform Overlap-and-Add on	contiguous tiles with stride 𝐹 − 1, where
𝐹 is the kernel size

• Advantages
– Reduces the total number of operations
– Increases the data parallelism
– Easy to store each tile on FPGA

BRAM for high throughput processing
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Algorithmic Analysis

• Theoretical computational complexity
– Direct convolution: 𝑂(𝑁1𝐹1)
– OaA-based convolution: 𝑂 𝑁1 log 𝐹

• Reduced computation	complexity leads to
– less execution time
– less energy consumption
– FFT parallelization	=>	 further reduction	in the
overall execution time.
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Computational Complexity Comparison

• GFLOP Reduction: AlexNet: 22.12%, VGG16: 41.5%
• The FFT size to achieve the minimum computational complexity

for each layer is different.
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Mapping Choices on CPU and FPGA

• Convolutional layer occupies over 90% of the total
computation time.

• The 2D convolution operation can be fully pipelined and
parallelized when transformed into frequency domain.

• Convolutional layer is computation bound (instead of memory
bandwidth bound).

• The data transfer overhead for ReLU and Pooling layer
overwhelm the acceleration using FPGA.

• If the kernel size across all CONV layers is	the	same, we can
put ReLU and pooling layer right after CONV layer. However,
the hardware complexity to build a generic accelerator for all
layers on FPGA is too high.
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Mapping	Choices	on	CPU	and	FPGA

Prepare Input 
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Accelerate CONV 
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Depth 
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Variable Length FFT Module

17

• Example	of	Radix-4	FFT	module:

• To	do	64	point	FFT,	we	need	log6 64 = 3 stages.
• To	do	16	point	FFT,	we	use	the	first	2	stages	of	the	64	point	

architecture,	and	bypass	the	third	stage.
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2D Convolver Accelerator
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• Architecture: 2D FFT + Multiply-Accumulate + 2D IFFT
• 2D FFT = Row FFT + Column FFT
• Matrix Transpose is achieved by direct wiring or streaming

permutation on streaming data	from	memory
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§ Fold the Clos network into a 3-stage Streaming Permutation Network (SPN)

§ SPN
§ Stage 0

§ 𝑆<-to-𝑆< connection
§ Stage 1

§ 𝑆< single-port 
memory blocks,
each of size 𝑆1

§ Stage 2
§ 𝑆<-to-𝑆< connection

§ Permutation in time
§ Permuting temporal 

order of data elements 
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Key Idea in our Streaming Permutation
Hardware Design
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Fast Fourier Transform

Fig. 8-point FFT architecture (𝑉𝑝 = 2, 𝑁𝑝 = 2)
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• Parameterized architecture:
• Algorithm-mapping parameters

• Vertical parallelism (𝑉?)
• Number of FFT processor (𝑁?)

• Architecture-binding parameters
• Type of memory, pipeline depth

• Optimizations:
• Memory activation scheduling

• Deactivate periodically when not accessed

• Energy efficient permutation
• Permute streaming data using memories
• Use the proposed data remapping technique

• Clock gating
• Disable the floating point unit when one of its 

inputs is 0, 1, j, or -j

• Comparison: 4.5x improvement
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Performance Evaluation	(1)

• Performance metric: Delay-Multiplier Product
– It is computed as the number of cycles to process a
complete convolutional layer times the number of
multipliers consumed by the design.

– Power	consumption	of	the	convolver is	proportional	
to	the	number	of	multipliers.	

– Area	of	the	convolver is	proportional	to	the	number	
of	multipliers.	

– Approximation to Energy dissipation and Area-
Delay Product.
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Performance Evaluation (2)

• DM ratio: @A	BC&D'E(	&F	G?HEI	J&#K&LKIC
@A	BC&D'E(	&F	MHNOPHQID	J&#K&LKIC

• Design Choice: Choose the FFT size such that the DM
ratio is maximized for	given resource constraints.
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Overall System Design

• CPU-FPGA concurrent processing through
shared memory

• Overlap memory access latency and data
processing latency by buffering data on FPGA

• By using CPU for light-weight but general tasks,
using FPGA for high computational intensive
but dedicated tasks, our framework can apply
to a wide range of CNN models.
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Overall System Design
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• Buffer FFT processed data for reuse across different kernels.
• Image buffer task parallelism 𝑇" and kernel buffer task

parallelism 𝑇S. The system parallelism is 𝑇"𝑇S.
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Experimental Setup

• Intel QuickAssist QPI FPGA Platform (Intel Heterogeneous	
Architecture	Research	Platform)

• 10	Core	Intel	Xeon	E5-2600	v2	processor	
• Altera	Stratix V	FPGA
• 6.25 MB BRAM + 939 K registers + 234720	ALM + 256 DSP
• CPU and FPGA share 2 GB address space.
• FPGA can access data through QPI from the last level
cache in the memory system of CPU.

• FPGA is only cacheline addressable (64 Bytes).
• We implemented a generic accelerator for convolutional
layer on FPGA. The remaining work is done on CPU.
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Experimental Results
Zhang (2015) Qiu (2016) Our Work

Data Precision 32-bit	float point 16-bit	fixed 32-bit float point

Platform Virtex-7 Zynq ZC706 Intel Xeon + Stratix V

Frequency (MHz) 100 150 200

CNN Model AlexNet VGG16-SVD AlexNet VGG16

Multiplier 747 780 224 224

Memory 4.5 MB 2.13 MB 4.0 MB 4.0 MB

Throughput
(GFLOPs/sec) 61.62 187.80 (CONV) 83.00 (CONV) 123.48 (CONV)

Delay (CONV) (ms) 21.61 163.42 40.81 263.27

Delay *	Multiplier 16142 127467 9141 58972
Resource Efficiency

(GFLOPs/sec/Multiplier) 0.028 0.24 0.37 0.55

Power Efficiency
(GFLOPs/sec/W) 3.31 19.50 6.30 9.37
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Conclusion
• High throughput OaA-based 2D convolver to accelerate

convolutional layer
• Implemented AlexNet and VGG16 on Intel QuickAssist QPI-

FPGA Platform and compared with state-of-art designs
– AlexNet: 1.35x	throughput improvement	using	3.33x	less	multipliers	

and	1.1x	less	memory
– VGG16: 0.66x	throughput using	3.48x	less	multipliers	with 32-bit

floating point. Potential performance improvement with compressed
data representation

• Future work
– Using compressed data representation
– Build automatic code generation tool
– Explore other algorithms including Winograd algorithm
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Deeper understanding of Overlap-and-Add

• Basic observation
– Large kernel sizes benefit more from frequency
domain approach than small kernel sizes

– Large stride makes frequency domain approach less
advantageous

– Deeper input feature map channels make frequency
domain approach more advantageous due to the
linearity of FFT.



33

Deeper understanding of Overlap-and-Add (2)

• We fix D_in = 64, D_out = 64, kernel size = 3, stride = 1. We
vary the input feature map size and calculate the computation
requirement ratio between direct convolution and OaA.
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Deeper understanding of Overlap-and-Add (3)

• Large input feature map size leads to more
advantage for OaA-based convolution.

• Corner case: input feature map size is slightly greater
than FFT sub-matrix. This causes approximately 4x
waste of computation.
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