

Frequency Domain Acceleration of Convolutional Neural Networks on CPU-FPGA Shared Memory System

Chi Zhang, Viktor K Prasanna University of Southern California {zhan527, prasanna}@usc.edu fpga.usc.edu

ACM FPGA, Feb. 2017

Outline

- Motivation
- Target platform and problem definition
- Main approach
- Overall system design
- Experiments and Results

Outline

Motivation

- Target platform and problem definition
- Main approach
- Overall system design
- Experiments and Results

Motivation

Natural Language Processing

Image Processing and Computer Vision

Speech Recognition

Self-driving Cars

Playing Games

Related Work

Outline

- Motivation
- Target platform and problem definition
- Main approach
- Overall system design
- Experiments and Results

Target Platform: CPU+FPGA+ Shared Memory

CPU-FPGA Shared Memory Model

Intel QuickAssist QPI-FPGA Platform

Key Attributes:

- 1. CPU threads and FPGA share *large* virtual address space.
- 2. Cache line accessible through high speed interconnection.
- Big advantage for streaming applications; overlap data transfer and processing times => P-M software pipeline

Problem Definition

 Given an *arbitrary trained* CNN architecture and resource constrains, map the *forward path* (inference) onto the CPU-FPGA shared memory system, such that the *total execution time* is minimized.

Outline

- Motivation
- Target platform and problem definition
- Main approach
- Overall system design
- Experiments and Results

State of the art on FPGA

- Convolutional layer occupies over 90% of the total computation time. Most previous work focus on using highly optimized hardware to accelerate the convolutional layer.
- Direct convolution: Adder Tree based convolver
 - Data parallelism is limited by the tree structure
 - Throughput is limited

FFT based approach

- 2D convolution can be computed efficiently using FFT.
- In signal processing, Overlap-and-Add (OaA) is an efficient way to compute the discrete convolution of a long signal with a small kernel.
- Parameter definition
 - Input feature map: $N_{in} \times N_{in} \times D_{in}$
 - Output feature map: $N_{out} \times N_{out} \times D_{out}$
 - Kernel: $F \times F \times D_{in} \times D_{out}$
 - FFT size: P, tile size: L

Convolutional Layer in Frequency Domain

- Overlap-and-Add (OaA)
 - Partition the input feature map to $L \times L$ tiles
 - Perform 2D FFT on each $L \times L$ tile of input feature maps and kernels
 - Perform Hadamard (Dot) Product of each input feature map tile and corresponding kernel map
 - Sum the result and perform 2D IFFT on each output feature map tile
 - Perform Overlap-and-Add on contiguous tiles with stride F 1, where *F* is the kernel size Unrolled Input Feature P_{out} Kernels in Maps in Tile (after FET) P_{out} Kernels in Example 2 Demain Output Feature P_{out} Kernel P_{out}
- Advantages
 - Reduces the total number of operations
 - Increases the data parallelism
 - Easy to store each tile on FPGA
 BRAM for high throughput processing

Algorithmic Analysis

- Theoretical computational complexity
 - Direct convolution: $O(N^2 F^2)$
 - OaA-based convolution: $O(N^2 \log F)$
- Reduced computation complexity leads to
 - less execution time
 - less energy consumption
 - FFT parallelization => further *reduction in the overall execution time.*

Computational Complexity Comparison

- GFLOP Reduction: AlexNet: 22.12%, VGG16: 41.5%
- The FFT size to achieve the minimum computational complexity for each layer is different.

Mapping Choices on CPU and FPGA

- Convolutional layer occupies over 90% of the total computation time.
- The 2D convolution operation can be fully pipelined and parallelized when transformed into frequency domain.
- Convolutional layer is computation bound (instead of memory bandwidth bound).
- The data transfer overhead for ReLU and Pooling layer overwhelm the acceleration using FPGA.
- If the kernel size across all CONV layers is the same, we can put ReLU and pooling layer right after CONV layer. However, the hardware complexity to build a *generic* accelerator for all layers on FPGA is too high.

Mapping Choices on CPU and FPGA

Variable Length FFT Module

• Example of Radix-4 FFT module:

- To do 64 point FFT, we need $\log_4 64 = 3$ stages.
- To do 16 point FFT, we use the first 2 stages of the 64 point architecture, and bypass the third stage.

2D Convolver Accelerator

- Architecture: 2D FFT + Multiply-Accumulate + 2D IFFT
- 2D FFT = Row FFT + Column FFT
- Matrix Transpose is achieved by direct wiring or streaming permutation on streaming data from memory

Key Idea in our Streaming Permutation Hardware Design

- Fold the Clos network into a 3-stage Streaming Permutation Network (SPN)
- SPN
 - Stage 0
 - S_1 -to- S_1 connection
 - Stage 1
 - S₁ single-port memory blocks, each of size S₂
 - Stage 2
 - S_1 -to- S_1 connection
- Permutation in time
 - Permuting temporal order of data elements

Supports any given arbitrary permutation on streaming data!

Fast Fourier Transform

- Parameterized architecture:
 - Algorithm-mapping parameters
 - Vertical parallelism (V_p)
 - Number of FFT processor (N_p)
 - Architecture-binding parameters
 - Type of memory, pipeline depth
- Optimizations:
 - Memory activation scheduling
 - Deactivate periodically when not accessed
 - Energy efficient permutation
 - Permute streaming data using memories
 - Use the proposed data remapping technique
 - Clock gating
 - Disable the floating point unit when one of its inputs is 0, 1, j, or -j
- Comparison: 4.5x improvement

Fig. 8-point FFT architecture (V_p = 2, N_p = 2)

Performance Evaluation (1)

- Performance metric: *Delay-Multiplier Product*
 - It is computed as the number of *cycles* to process a complete convolutional layer times the number of *multipliers* consumed by the design.
 - Power consumption of the convolver is proportional to the number of multipliers.
 - Area of the convolver is proportional to the number of multipliers.
 - Approximation to *Energy dissipation* and *Area*-*Delay Product*.

Performance Evaluation (2)

• **DM ratio**: $\frac{DM \operatorname{Product} of \operatorname{Space} \operatorname{Convolver}}{DM \operatorname{Product} of \operatorname{OaA-based} \operatorname{Convolver}}$

 Design Choice: Choose the FFT size such that the DM ratio is maximized for given resource constraints.

Table 2: Space-OaA convolver DM ratio with various kernel and FFT sizes, S = 1, $N_{in} \gg F$

Kernel size	3	3	3	5	5	7
FFT size	4	8	16	8	16	8
DM ratio	0.75	1.01	0.77	1.25	1.56	0.61
Kernel size	7	7	0	0	11	11
	•	1	9	9	11	11
FFT size	16	32	9 16	32	11	32

Outline

- Motivation
- Target platform and problem definition
- Main approach
- Overall system design
- Experiments and Results

Overall System Design

- CPU-FPGA concurrent processing through shared memory
- Overlap memory access latency and data processing latency by buffering data on FPGA
- By using CPU for light-weight but general tasks, using FPGA for high computational intensive but dedicated tasks, our framework can apply to a wide range of CNN models.

Overall System Design

- Buffer FFT processed data for **reuse** across different kernels.
- Image buffer task parallelism T_i and kernel buffer task parallelism T_k . The system parallelism is T_iT_k .

Outline

- Motivation
- Target platform and problem definition
- Main approach
- Overall system design
- Experiments and Results

Experimental Setup

- Intel QuickAssist QPI FPGA Platform (Intel Heterogeneous Architecture Research Platform)
- 10 Core Intel Xeon E5-2600 v2 processor
- Altera Stratix V FPGA
- 6.25 MB BRAM + 939 K registers + 234720 ALM + 256 DSP
- CPU and FPGA share 2 GB address space.
- FPGA can access data through QPI from the last level cache in the memory system of CPU.
- FPGA is only cacheline addressable (64 Bytes).
- We implemented a generic accelerator for convolutional layer on FPGA. The remaining work is done on CPU.

Experimental Results

	· · · · · · · · · · · · · · · · · · ·			
	Zhang (2015)	Qiu (2016)	Our Work	
Data Precision	32-bit float point	16-bit fixed	32-bit float point	
Platform	Virtex-7	Zynq ZC706	Intel Xeon + Stratix V	
Frequency (MHz)	100	150	200	
CNN Model	AlexNet	VGG16-SVD	AlexNet	VGG16
Multiplier	747	780	224	224
Memory	4.5 MB	2.13 MB	4.0 MB	4.0 MB
Throughput (GFLOPs/sec)	61.62	187.80 (CONV)	83.00 (CONV)	123.48 (CONV)
Delay (CONV) (ms)	21.61	163.42	40.81	263.27
Delay * Multiplier	16142	127467	9141	58972
Resource Efficiency (GFLOPs/sec/Multiplier)	0.028	0.24	0.37	0.55
Power Efficiency (GFLOPs/sec/W)	3.31	19.50	6.30	9.37

Conclusion

- High throughput OaA-based 2D convolver to accelerate convolutional layer
- Implemented AlexNet and VGG16 on Intel QuickAssist QPI-FPGA Platform and compared with state-of-art designs
 - AlexNet: 1.35x throughput improvement using 3.33x less multipliers and 1.1x less memory
 - VGG16: 0.66x throughput using 3.48x less multipliers with 32-bit floating point. Potential performance improvement with compressed data representation
- Future work
 - Using compressed data representation
 - Build automatic code generation tool
 - Explore other algorithms including Winograd algorithm

fpga.usc.edu

Backup Slides

31

Deeper understanding of Overlap-and-Add

- Basic observation
 - Large kernel sizes benefit more from frequency domain approach than small kernel sizes
 - Large stride makes frequency domain approach less advantageous
 - Deeper input feature map channels make frequency domain approach more advantageous due to the linearity of FFT.

Deeper understanding of Overlap-and-Add (2)

 We fix D_in = 64, D_out = 64, kernel size = 3, stride = 1. We vary the input feature map size and calculate the computation requirement ratio between direct convolution and OaA.

Computation requirement ratio between direct convolution and OaA

Deeper understanding of Overlap-and-Add (3)

- Large input feature map size leads to more advantage for OaA-based convolution.
- Corner case: input feature map size is slightly greater than FFT sub-matrix. This causes approximately 4x waste of computation.

Reference

- [1] C. Zhang, et al. Optimizing FPGA-based Accelerator Design for Deep Convolutional Neural Networks. In Proceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, FPGA '15.
- [2] Ren Chen, Hoang Le and Viktor K. Prasanna, Energy Efficient Parameterized FFT Architecture, IEEE International Conference on Field Programmable Logic and Applications (FPL), August 2013.

