
Frequency Domain Acceleration of Convolutional Neural
Networks on CPU-FPGA Shared Memory System

Chi Zhang, Viktor	K	Prasanna
University	of	Southern	California
{zhan527, prasanna}@usc.edu

fpga.usc.edu

ACM	FPGA,	Feb.	2017

2

Outline

• Motivation
• Target platform and problem definition
• Main approach
• Overall system design
• Experiments and Results

3

Outline

• Motivation
• Target platform and problem definition	
• Main approach
• Overall system design
• Experiments and Results

4

Motivation

Playing Games

Natural Language Processing

Speech Recognition

Image Processing and Computer Vision

Self-driving Cars

5

Related Work

Algorithm
Level

Model Compression

Computation Reduction

Fast Fourier
Transform

Singular Value
Decomposition

Overlap-and-Add

Shrink Model
Representation

Shrink Data PrecisionConvolutional
Neural Network

Acceleration

Hardware
Level

Optimize Computation
Engine

Optimize Memory
System

Heterogeneous Platform
Concurrent Processing

High Throughput
Convolver

High Throughput FFT
Engine

Double Buffering
Hide Memory Latency

CPU + FPGA Shared
Memory System

Automatic Code
Generation High-level Synthesis

6

Outline

• Motivation
• Target platform and problem definition
• Main approach
• Overall system design
• Experiments and Results

7

Target Platform:	CPU+FPGA+	Shared	Memory

Memory Fetch Unit

Input output

memory
response

buffer

memory
request
buffer

Coherent Memory
InterfaceFPGA

Shared Memory
Address Space

Coherent Memory
Interface

Memory Relay
Engine

Main Memory

High Speed Interconnection

Accelerator Accelerator Accelerator

Key	Attributes:
1. CPU	threads	and	FPGA	share	large virtual	address	space.
2. Cache	line	accessible	through high speed interconnection.
Big	advantage	for	streaming	applications;	overlap data transfer and
processing	times		=>	P-M	software	pipeline

CPU-FPGA Shared Memory Model Intel QuickAssist QPI-FPGA Platform

8

Problem Definition

• Given an arbitrary trained CNN architecture and
resource constrains, map the forward path
(inference) onto the CPU-FPGA shared memory
system, such that the total execution time is
minimized.

…

︸

︷
︷

︸

Dout

Nin DinNin× ×
Nout

Nout

Dout
︸
︷
︷
︸

︸ ︷︷ ︸

2D Convolution

︸ ︷︷ ︸

Sum and Bias

f(x) = max(0, x)

……

×

Nout

︸
︷
︷
︸

Nout
DinF

FDin
︸
︷
︷
︸

Nout

︸
︷
︷
︸

Nout
DinF

FDin
︸
︷
︷
︸

Nout

︸
︷
︷
︸

Nout
DinF

FDin
︸
︷
︷
︸

…

︸ ︷︷ ︸

Convolutional Layer

︸ ︷︷ ︸

ReLU Layer

Npool

Npool

Dout
︸
︷
︷
︸

Nout

Nout

Dout
︸
︷
︷
︸

︸ ︷︷ ︸

Pooling Layer

Max/Average Window

Unrolling

︸ ︷︷ ︸

Fully-connected Layer

Pr(“Cat”)

Pr(“Dog”)
Pr(“Truck”)

Pr(“Ship”)

f(

⎡

⎢

⎣

xm,n . . . xm,n+w−1

...
...

...
xm+w−1,n . . . xm+w−1,n+w−1

⎤

⎥

⎦

) = y(i, j)

9

Outline

• Motivation
• Target platform and problem definition
• Main approach
• Overall system design
• Experiments and Results

10

State	of	the	art	on FPGA
• Convolutional layer occupies over 90% of the total

computation time. Most previous work focus on using
highly optimized hardware to accelerate the
convolutional layer.

• Direct convolution: Adder Tree based convolver
– Data parallelism is limited by the tree structure
– Throughput is limited

⇥ ⇥ ⇥
⇥ ⇥ ⇥
⇥ ⇥ ⇥

+
+

+
+

…

Input Feature
Maps

Input Kernels
+

+

Multiplier Array Adder Tree

+
+

Accumulator

Output

11

FFT based approach

• 2D convolution can be computed efficiently using FFT.
• In signal processing, Overlap-and-Add (OaA) is an
efficient way to compute the discrete convolution of
a long signal with a small kernel.

• Parameter definition
– Input feature map: 𝑁"#×𝑁"#×𝐷"#
– Output feature map: 𝑁&'(×𝑁&'(×𝐷&'(
– Kernel: 𝐹×𝐹×𝐷"#×𝐷&'(
– FFT size: 𝑃, tile size: 𝐿

12

Convolutional Layer in Frequency Domain
• Overlap-and-Add (OaA)

– Partition the input feature map to 𝐿	×	𝐿 tiles
– Perform 2D FFT on	each 𝐿	×	𝐿 tile of input feature maps and kernels
– Perform Hadamard (Dot) Product of each input feature map tile and

corresponding kernel map
– Sum the result and perform 2D IFFT on each output feature map tile
– Perform Overlap-and-Add on	contiguous tiles with stride 𝐹 − 1, where
𝐹 is the kernel size

• Advantages
– Reduces the total number of operations
– Increases the data parallelism
– Easy to store each tile on FPGA

BRAM for high throughput processing

P

P
Din

(1, 1, 4)
(1, 1, 3)

(1, 1, 2)
(1, 1, 1)|{z}

…

P

P
Din

(1, 2, 4)
(1, 2, 3)

(1, 2, 2)
(1, 2, 1)|{z}

P

P
Din

(4, 4, 4)
(4, 4, 3)

(4, 4, 2)
(4, 4, 1)|{z}

P

P
Din

|{z}

…

P

P
Din

|{z}

P

P
Din

|{z}

dNin
L e2

|
{
z
}

Unrolled Input Feature
Maps in Tile (after FFT)

Dout Kernels in
Frequency Domain

Multiply-Accumulate Overlap-and-Add

Output Feature Maps

(1, 1) (1, 2) (1, 3) (1, 4)

(2, 1) (2, 2) (2, 3) (2, 4)

(3, 1)

(4, 1)

(3, 2)

(4, 2)

(3, 3) (3, 4)

(4, 3) (4, 4)

(1, 1) (1, 2) (1, 3) (1, 4)

(2, 1) (2, 2) (2, 3) (2, 4)

(3, 1)

(4, 1)

(3, 2)

(4, 2)

(3, 3) (3, 4)

(4, 3) (4, 4)

(1, 1, 1)(1, 2, 1)(1, 3, 1)(1, 4, 1)

(2, 1, 1)(2, 2, 1)(2, 3, 1)(2, 4, 1)

(3, 1, 1)

(4, 1, 1)

(3, 2, 1)

(4, 2, 1)

(3, 3, 1)(3, 4, 1)

(4, 3, 1)(4, 4, 1)

13

Algorithmic Analysis

• Theoretical computational complexity
– Direct convolution: 𝑂(𝑁1𝐹1)
– OaA-based convolution: 𝑂 𝑁1 log 𝐹

• Reduced computation	complexity leads to
– less execution time
– less energy consumption
– FFT parallelization	=>	 further reduction	in the
overall execution time.

14

Computational Complexity Comparison

• GFLOP Reduction: AlexNet: 22.12%, VGG16: 41.5%
• The FFT size to achieve the minimum computational complexity

for each layer is different.

0

1

2

3

CONV1 CONV2 CONV3 CONV4 CONV5 Total

AlexNet CONVLayer	(GFLOP)

Space	Convolution Overlap-and-Add

0
10
20
30
40

CONV1 CONV2 CONV3 CONV4 CONV5 Total

VGG16 CONV Layer (GFLOP)

Space	Convolution Overlap-and-Add

15

Mapping Choices on CPU and FPGA

• Convolutional layer occupies over 90% of the total
computation time.

• The 2D convolution operation can be fully pipelined and
parallelized when transformed into frequency domain.

• Convolutional layer is computation bound (instead of memory
bandwidth bound).

• The data transfer overhead for ReLU and Pooling layer
overwhelm the acceleration using FPGA.

• If the kernel size across all CONV layers is	the	same, we can
put ReLU and pooling layer right after CONV layer. However,
the hardware complexity to build a generic accelerator for all
layers on FPGA is too high.

16

Mapping	Choices	on	CPU	and	FPGA

Prepare Input
Feature Maps,
kernels (CPU)

Accelerate CONV
layer (FPGA) Overlap (CPU)

ReLU (CPU)Pooling (CPU)
(Optional)

Depth
Concatenation

(CPU) (Optional)

Fully-Connected
(CPU)

17

Variable Length FFT Module

17

• Example	of	Radix-4	FFT	module:

• To	do	64	point	FFT,	we	need	log6 64 = 3 stages.
• To	do	16	point	FFT,	we	use	the	first	2	stages	of	the	64	point	

architecture,	and	bypass	the	third	stage.

18

2D Convolver Accelerator

1D
IFFT

1D
IFFT

1D
IFFT

1D
IFFT

…

1D
IFFT

1D
IFFT

1D
IFFT

1D
IFFT

…

Stream
 M

atrix Transpose

| {z }
2D IFFT Kernel

1D
FFT

1D
FFT

1D
FFT

1D
FFT

…

1D
FFT

1D
FFT

1D
FFT

1D
FFT

…

Stream
 M

atrix Transpose

| {z }
2D FFT Kernel

z
}|

{
S
tr
ea

m
in
p
u
t
fe
a
tu

re
m
a
p
s

…

⇥

⇥

⇥

⇥

+

+

+

+

| {z }
MAC

Input kernels

|
{z

}
S
t
r
e
a
m

o
u
t
p
u
t
f
e
a
t
u
r
e

m
a
p
s

P
2

|{z}
Row FFT

|{z}
Row IFFT

|{z}
Column IFFT

|{z}
Column FFT

• Architecture: 2D FFT + Multiply-Accumulate + 2D IFFT
• 2D FFT = Row FFT + Column FFT
• Matrix Transpose is achieved by direct wiring or streaming

permutation on streaming data	from	memory

19

§ Fold the Clos network into a 3-stage Streaming Permutation Network (SPN)

§ SPN
§ Stage 0

§ 𝑆<-to-𝑆< connection
§ Stage 1

§ 𝑆< single-port
memory blocks,
each of size 𝑆1

§ Stage 2
§ 𝑆<-to-𝑆< connection

§ Permutation in time
§ Permuting temporal

order of data elements

19

Key Idea in our Streaming Permutation
Hardware Design

…

… …

…
…

Crossbar boxes Crossbar boxes Crossbar boxes

…
…

… … ……

In
pu

t s
tr

ea
m

O
ut

pu
t s

tre
am

S2 S1 S2

S2 x S2S1 x S1 Crossbar

SPN, p = S1

...

...

…

Clos Network, N = S1 x S2

Crossbar ... Memory block

Stage 0 Stage 1
(Permutation in time)

Stage 2

S1 x S1

S1 x S1 S1 x S1

S1 x S1S2 x S2

S2 Mem Blocks

Supports any given arbitrary permutation on streaming data!

20

Fast Fourier Transform

Fig. 8-point FFT architecture (𝑉𝑝 = 2, 𝑁𝑝 = 2)

0

50

100

256 1024 4096 65536

En
er
gy
	e
ffi
ci
en

cy
	

(G
O
PS
/J
ou

le
)

FFT	problem	size

Baseline Optimized	design

0

10

20

256 1024 4096 65536En
er
gy
	e
ffi
ci
en

cy
	

(G
FL
O
PS
/J
)

FFT	Problem	size

Baseline Optimized	design

• Parameterized architecture:
• Algorithm-mapping parameters

• Vertical parallelism (𝑉?)
• Number of FFT processor (𝑁?)

• Architecture-binding parameters
• Type of memory, pipeline depth

• Optimizations:
• Memory activation scheduling

• Deactivate periodically when not accessed

• Energy efficient permutation
• Permute streaming data using memories
• Use the proposed data remapping technique

• Clock gating
• Disable the floating point unit when one of its

inputs is 0, 1, j, or -j

• Comparison: 4.5x improvement

21

Performance Evaluation	(1)

• Performance metric: Delay-Multiplier Product
– It is computed as the number of cycles to process a
complete convolutional layer times the number of
multipliers consumed by the design.

– Power	consumption	of	the	convolver is	proportional	
to	the	number	of	multipliers.	

– Area	of	the	convolver is	proportional	to	the	number	
of	multipliers.	

– Approximation to Energy dissipation and Area-
Delay Product.

22

Performance Evaluation (2)

• DM ratio: @A	BC&D'E(&F	G?HEI	J&#K&LKIC
@A	BC&D'E(&F	MHNOPHQID	J&#K&LKIC

• Design Choice: Choose the FFT size such that the DM
ratio is maximized for	given resource constraints.

23

Outline

• Motivation
• Target platform and problem definition
• Main approach
• Overall system design
• Experiments and Results

24

Overall System Design

• CPU-FPGA concurrent processing through
shared memory

• Overlap memory access latency and data
processing latency by buffering data on FPGA

• By using CPU for light-weight but general tasks,
using FPGA for high computational intensive
but dedicated tasks, our framework can apply
to a wide range of CNN models.

25

Overall System Design

2D FFT
Kernel

2D FFT
Kernel

2D FFT
Kernel

Kernel
Buffer

Kernel
Buffer

Memory Response From Shared Memory
(Input Feature Maps/Kernels)

Image
Buffer

Image
Buffer

P 2 P 2 P 2 Tk · P 2 Tk · P 2

Ti · P 2 Ti · P 2

Mux

Mux

⇥+ ⇥+ ⇥+
Ti · P 2

Ti · Tk · P 2 MAC

2D IFFT
Kernel

2D IFFT
Kernel

2D IFFT
Kernel

Memory Request to Shared Memory
(Output Feature Maps)

Ti · Tk · P 2

P 2 P 2 P 2

Mux

Ti · P 2

1x1 Kernel Bypassing

• Buffer FFT processed data for reuse across different kernels.
• Image buffer task parallelism 𝑇" and kernel buffer task

parallelism 𝑇S. The system parallelism is 𝑇"𝑇S.

26

Outline

• Motivation
• Target platform and problem definition
• Main approach
• Overall system design
• Experiments and Results

27

Experimental Setup

• Intel QuickAssist QPI FPGA Platform (Intel Heterogeneous	
Architecture	Research	Platform)

• 10	Core	Intel	Xeon	E5-2600	v2	processor	
• Altera	Stratix V	FPGA
• 6.25 MB BRAM + 939 K registers + 234720	ALM + 256 DSP
• CPU and FPGA share 2 GB address space.
• FPGA can access data through QPI from the last level
cache in the memory system of CPU.

• FPGA is only cacheline addressable (64 Bytes).
• We implemented a generic accelerator for convolutional
layer on FPGA. The remaining work is done on CPU.

28

Experimental Results
Zhang (2015) Qiu (2016) Our Work

Data Precision 32-bit	float point 16-bit	fixed 32-bit float point

Platform Virtex-7 Zynq ZC706 Intel Xeon + Stratix V

Frequency (MHz) 100 150 200

CNN Model AlexNet VGG16-SVD AlexNet VGG16

Multiplier 747 780 224 224

Memory 4.5 MB 2.13 MB 4.0 MB 4.0 MB

Throughput
(GFLOPs/sec) 61.62 187.80 (CONV) 83.00 (CONV) 123.48 (CONV)

Delay (CONV) (ms) 21.61 163.42 40.81 263.27

Delay *	Multiplier 16142 127467 9141 58972
Resource Efficiency

(GFLOPs/sec/Multiplier) 0.028 0.24 0.37 0.55

Power Efficiency
(GFLOPs/sec/W) 3.31 19.50 6.30 9.37

29

Conclusion
• High throughput OaA-based 2D convolver to accelerate

convolutional layer
• Implemented AlexNet and VGG16 on Intel QuickAssist QPI-

FPGA Platform and compared with state-of-art designs
– AlexNet: 1.35x	throughput improvement	using	3.33x	less	multipliers	

and	1.1x	less	memory
– VGG16: 0.66x	throughput using	3.48x	less	multipliers	with 32-bit

floating point. Potential performance improvement with compressed
data representation

• Future work
– Using compressed data representation
– Build automatic code generation tool
– Explore other algorithms including Winograd algorithm

30

Thanks

fpga.usc.edu

31

Backup Slides

32

Deeper understanding of Overlap-and-Add

• Basic observation
– Large kernel sizes benefit more from frequency
domain approach than small kernel sizes

– Large stride makes frequency domain approach less
advantageous

– Deeper input feature map channels make frequency
domain approach more advantageous due to the
linearity of FFT.

33

Deeper understanding of Overlap-and-Add (2)

• We fix D_in = 64, D_out = 64, kernel size = 3, stride = 1. We
vary the input feature map size and calculate the computation
requirement ratio between direct convolution and OaA.

0
0.5
1

1.5
2

2.5

0 50 100 150 200 250

Ra
tio

Input featuremap size

Computation requirement ratio
between direct convolution and OaA

34

Deeper understanding of Overlap-and-Add (3)

• Large input feature map size leads to more
advantage for OaA-based convolution.

• Corner case: input feature map size is slightly greater
than FFT sub-matrix. This causes approximately 4x
waste of computation.

14

FFT	
sub-matrix

Convolution	
Image

35

Reference

• [1] C.	Zhang,	et al.	Optimizing	FPGA-based	
Accelerator	Design	for	Deep	Convolutional	Neural	
Networks.	In	Proceedings	of	the	2015	ACM/SIGDA	
International	Symposium	on	Field-Programmable	
Gate	Arrays,	FPGA	’15.	

• [2] Ren	Chen,	Hoang	Le	and	Viktor	K.	Prasanna,	
Energy	Efficient	Parameterized	FFT	Architecture,	
IEEE	International	Conference	on	Field	
Programmable	Logic	and	Applications	(FPL),	August	
2013.

