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Convolutional	Neural	Network
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Marco Architecture of VGG

Image	from:	https://blog.heuritech.com/2016/02/29/a-brief-report-of-the-heuritech-deep-learning-meetup-5/l
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• OpenCL	provides	a	good	FPGA	
abstration	
	

• Unlike	OpenCL	on	GPU	or	CPU,	
OpenCL	FPGA	describes	both	
hardware	and	software	

• Use #prgma to guide hardware
generation:
– loop	unrolling; SIMD	factor; compute	

unit	replication
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OpenCL FPGA Framework
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Related works
• Generic	CNN	accelerators: [1]-[3]
• Balance	computation and external memory	access: [4] -[7]
• Hardware Abstraction: [7][8]
• Contribution:
– Identify	the	performance	bottleneck	in	large	scale	FPGA	CNN	accelerator	is	on-
chip	memory	bandwidth	

– A CNN accelerator achieved optimized balance among computation,on-chip
memory and external memory access

6

[1]	Farabet,	et	al.	Hardware	accelerated	convolutional	 neural	networks	for	synthetic	vision	 systems.	ISCAS	2010	
[2]	M.	Peemen,	et	al.	Memory-centric	accelerator	design	for	convolutional	 neural	networks.	ICCD	2013	
[3]	V.	Gokhale,	 et	al.	A	240	G-ops/s	mobile	coprocessor	 for	deep	neural	networks.	CVPR	Workshops,	 2014.	
[4]	C.	Zhang,	et	al.	Optimizing	FPGA-based	accelerator	design	 for	deep	convolutional	 neural	networks.	ISFPGA	2015
[5]	N.	Suda, et al. Throughput-Optimized	OpenCL-based	 FPGA	Accelerator	for	Large-Scale	Convolutional	 Neural	Networks. ISFPGA 2016
[6] J. Qiu, et al. Going	Deeper	with	Embedded	 FPGA	Platform	for	Convolutional	 Neural	Network. ISFPGA 2016
[7]	C. Zhang Caffeine:	Towards	Uniformed	Representation	and	Acceleration	for	Deep	Convolutional	 Neural	Networks. ICCAD 2016
[8] H. Sharma, et al. From	High-Level	Deep	Neural	Models	 to	FPGAs. MICRO2016



Motivation

• New FPGA devices havemore
and faster DSP resources

• We should use	all	DSP	resources	
every	cycle	to	obtain	the	GFLOPS	
number	in	datasheet

• The existing design cannot utilize
the DSP resources well
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Balance	Analysis Model
• Balance	is	the		relationship	between	storage and computation resources		
• Assumption:
• Only	one	bottleneck	in	the	system
• Bandwidth	bounded
• Computation	and	memory	access	overlap	perfectly.	
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Machine	Balance
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Code	Balance
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• On-chip	Code	Balance	is	
determined	by	input	and	output	
data	size	of	instructions

• For	example,	MAC operation has	a	

1

• Off-chip	Code	Balance		is	determined	
by	the	input	and	output	data	size	of	
the	whole	program

• Assume	unlimited on-chip	memory	
size



Break	the	memory	Wall
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To	achieve	𝑃,-. 	,	we	need	to	satisfy		𝐵,
122 >	𝐵3

122 and 𝐵,14 >	𝐵3
122



Off-chip	balance

Layer 𝑩𝑪
𝑶𝒇𝒇

CONV1 0.0021
CONV2 0.0010
CONV3 0.00062
CONV4 0.00087
CONV5 0.00277
FC 0.5
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Technology
Node

𝑩𝒎
𝑶𝒇𝒇

28nm 0.168
20nm 0.217

14/16nm 0.177
14/16nm
w/	HBM

0.177

• 𝑩𝑪
𝑶𝒇𝒇 <	𝑩𝒎

𝑶𝒇𝒇 for	convolution	
layers

• 𝑩𝑪
𝑶𝒇𝒇 >	𝑩𝒎

𝑶𝒇𝒇 for	FC layer,	but	only	
contribute	a	small	portion	of	
computation



On-chip	balance
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Technology
Node

𝑩𝒎𝑶𝒏

28nm 0.0033

20nm 0.0026

14/16nm 0.0010

Layer 𝑩𝑪𝑶𝒏

CONV1 1
CONV2 1
CONV3 1
CONV4 1
CONV5 1
FC 1

• 𝑩𝑪𝑶𝒏 >	𝑩𝒎𝑶𝒏 for	all	layer

• On-chip	memory	bandwidth	
becomes	the	bottle	neck

• We	need	to	increase	𝑩𝒎𝑶𝒏



Data	Reuse	Requirement		
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• The	balance	analysis assumes
unlimited	on-chip	memory	size	(load	
data	once)

• Under	limited	on-chip	memory	
capacity,	we	need	to	load	data	more	
than	once.

• To	satisfied	external	memory	
bandwidth	requirement,	we	need	to	
reuse	data	at	least									.
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Optimization	Direction

• Increase to utilize all DSP resources

• Satisfy the	data	reuse	requirement	with	limited	on-chip	
memory	size.

15



Optimization	Direction

• Increase to utilize all DSP resources

• Satisfy the	data	reuse	requirement	with	limited	on-chip	
memory	size.
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Matrix	Multiplication	Kernel
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BRAM	usage	reduction
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By	multicasting,	we	can	increase	on-chip	
machine	balance	by		 𝑁)67

Experiment	on	Arria10	GX1150	FPGA
(w/ 1518 DSP and 2713 M20k
Memory):



Optimization	Direction

• Increase to utilize all DSP resources

• Satisfy the	data	reuse	requirement	with	limited	on-chip	
memory	size.
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Kernel Design
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CU Design
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Work-item Scheduling	
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2D Scheduling
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Minimizing	external	memory	bandwidth	

• Objective:
– Find	the	optimized scheduling	
policy	

– To minimize	external	memory	
bandwidth

• Constraint:
– On-chip	memory	size

• Based	on:
– CNN	layer	parameters
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Optimization	result
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The	optimization	can	effectively	reduce	the	
requirement	of	off-chip	memory	bandwidth		



Experiment Setup

• FPGA: Arria10	GX1150	
• 1518 DSPs	
• 2713 M20k memory
• 1GB	DDR4 with	17GB/s	BW

• Kernel implemented as an
OpenCL	IP	library	package using
Verilog
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Arria 10 GX FPGA Development Kit



Implementation Result
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Total Ours Percentage

DSP 1518 1320 86

BRAM 2713 1250 46

Logic 1506k 437k 43

Frequency 370 MHz



VGG Performance

Layers Number of Ops Duration (ms) Performance
GOP/s

Conv 30.69G 11.9 2568

FC 0.073G 5.5 13

Total 30.76G 17.4 1790
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Overall VGG Classification Throughput: 57 image/s



Performance Comparison
Suda et. al [1] Qiu et. al [2] Ours

Platform Stratix V GSD8 Zynq XC7Z045	 Arria 10 GX1150
Performance(GOP/s)	 117.8 136.9 1790

Performance
Density
(OPs/DSP/Cycle)

0.36 1.17 3.06

Power efficiency	
(GOP/J)

1.84 14.22 47.88
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[1]	N.	Suda, et al. Throughput-Optimized	OpenCL-based	FPGA	Accelerator	for	Large-Scale	Convolutional	Neural	Networks. ISFPGA 2016
[2] J. Qiu, et al. Going	Deeper	with	Embedded	FPGA	Platform	for	Convolutional	Neural	Network. ISFPGA 2016



Summary

• Motivation
• Balance analysis model
• Our Work:
– Multicasting among PEs
– 2D Scheduling

• Performance comparison
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Thanks!

Q&A
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