

Improving the Performance of OpenCL-based FPGA Accelerator for Convolutional Neural Network

Jialiang Zhang and Jing Li

Outline

- Background
- Motivation
- Balance analysis model
- Proposed design
- Performance
- Conclusion

Convolutional Neural Network

Marco Architecture of VGG

OpenCL Framework

- OpenCL provides a good FPGA abstration
- Unlike OpenCL on GPU or CPU, OpenCL FPGA describes both hardware and software
- Use #prgma to guide hardware generation:
 - loop unrolling; SIMD factor; compute unit replication

OpenCL FPGA Framework

Related works

- Generic CNN accelerators: [1]-[3]
- Balance computation and external memory access: [4] -[7]
- Hardware Abstraction: [7][8]
- Contribution:
 - Identify the performance bottleneck in large scale FPGA CNN accelerator is onchip memory bandwidth
 - A CNN accelerator achieved optimized balance among computation, on-chip memory and external memory access

- [2] M. Peemen, et al. Memory-centric accelerator design for convolutional neural networks. ICCD 2013
- [3] V. Gokhale, et al. A 240 G-ops/s mobile coprocessor for deep neural networks. CVPR Workshops, 2014.
- [4] C. Zhang, et al. Optimizing FPGA-based accelerator design for deep convolutional neural networks. ISFPGA 2015
- [5] N. Suda, et al. Throughput-Optimized OpenCL-based FPGA Accelerator for Large-Scale Convolutional Neural Networks. ISFPGA 2016
- [6] J. Qiu, et al. Going Deeper with Embedded FPGA Platform for Convolutional Neural Network. ISFPGA 2016
- [7] C. Zhang Caffeine: Towards Uniformed Representation and Acceleration for Deep Convolutional Neural Networks. ICCAD 2016
- [8] H. Sharma, et al. From High-Level Deep Neural Models to FPGAs. MICRO 2016

^[1] Farabet, et al. Hardware accelerated convolutional neural networks for synthetic vision systems. ISCAS 2010

Motivation

- New FPGA devices have more and faster DSP resources
- We should use all DSP resources DSP every cycle to obtain the GFLOPS number in datasheet

	28nm	20nm	16/14nm
Amount of DSP	3600	5520	12288
DSP frequency (MHz)	741	741	891
Arith. Perf. (GFLOP/sec)	5335	8180	21897

• The existing design cannot utilize the DSP resources well

Balance Analysis Model

- Balance is the relationship between storage and computation resources
- Assumption:
 - Only one bottleneck in the system
 - Bandwidth bounded
 - Computation and memory access overlap perfectly.

		Hardware determined	Algorithm determined
		Machine Balance	Code Balance
Refer to on-chip Mem BW	On-chip	B_m^{On}	B_m^{On}
Refer to off-chip Mem BW	Off-chip	B_m^{Off}	B_{C}^{Off}

Machine Balance

Code Balance

$B_c^{on} =$	Instruction Input (Words)
	No. of Operations (Ops),

- On-chip Code Balance is determined by input and output data size of instructions
- For example, MAC operation has a $B_c^{on} = 1$

$$B_c^{off} = \frac{\text{Data Size}}{\text{Total No. of Operation}}$$

- Off-chip Code Balance is determined by the input and output data size of the whole program
- Assume unlimited on-chip memory size

Break the memory Wall

$$P^{\{on,off\}} = \begin{cases} P_{max}, & \frac{B_m^{\{on,off\}}}{B_c^{\{on,off\}}} \ge 1, \quad (\text{comp. bound}), \\ \frac{bw_{max}^{\{on,off\}}}{B_c^{\{on,off\}}}, & \frac{B_m^{\{on,off\}}}{B_c^{\{on,off\}}} < 1, \quad (\text{mem. bound}), \end{cases}$$
$$P = \min\left(P^{on}, P^{off}\right) = \min\left(\frac{bw_{max}^{on}}{B_c^{on}}, & \frac{bw_{max}^{off}}{B_c^{off}}, & P_{max}\right), \\ & \stackrel{\text{On-chip}}{\underset{\text{Bounded}}{\overset{\text{On-chip}}{Bounded}}} & \stackrel{\text{Off-chip}}{\underset{\text{Bounded}}{\overset{\text{Comp.}}{Bounded}}} \end{cases}$$

To achieve P_{max} , we need to satisfy $B_m^{Off} > B_c^{Off}$ and $B_m^{On} > B_c^{Off}$

Off-chip balance

Layer	B_{C}^{Off}	Technology	B_m^{Off}
CONV1	0.0021	Node	
CONV2	0.0010	28nm	0.168
CONV3	0.00062	20nm	0.217
CONV4	0.00087	14/16nm	0.177
CONV5	0.00277	14/16nm	0.177
FC	0.5	w/ HBM	

• $B_c^{Off} < B_m^{Off}$ for convolution layers

• $B_{C}^{off} > B_{m}^{off}$ for FC layer, but only contribute a small portion of computation

On-chip balance

Layer	B_C^{On}		Technology	B_m^{On}
CONV1	1		Node	
CONV2	1		28nm	0.0033
CONV3	1		20nm	0.0026
CONV4	1		201111	0.0020
CONV5	1		14/16nm	0.0010
FC	1	_		

•
$$B_C^{On} > B_m^{On}$$
 for all layer

• On-chip memory bandwidth becomes the bottle neck

• We need to increase
$$B_m^{On}$$

Data Reuse Requirement

- The balance analysis assumes unlimited on-chip memory size (load data once)
- Under limited on-chip memory capacity, we need to load data more than once.
- To satisfied external memory bandwidth requirement, we need to reuse data at least $\frac{B_c^{on}}{B_m^{off}}$.

Optimization Direction

• Increase B_m^{on} to utilize all DSP resources

• Satisfy the data reuse requirement with limited on-chip memory size.

Optimization Direction

• Increase B_m^{on} to utilize all DSP resources

• Satisfy the data reuse requirement with limited on-chip memory size.

Matrix Multiplication Kernel

$$(AB)_{ij} = \sum_{k} A_{ik} B_{kj}$$

 $\forall i < m, j < n$

BRAM usage reduction

Optimization Direction

• Increase B_m^{on} to utilize all DSP resources

• Satisfy the data reuse requirement with limited on-chip memory size.

Kernel Design

CU Design

Work-item Scheduling

Minimizing external memory bandwidth

$$\min_{x_0, x_1, x_2} \quad a\frac{x_0}{x_1} + b\frac{x_0}{x_2} + c\frac{1}{x_0},$$

s.t.
$$x_0x_1 + x_1x_2 < size_{on-chip}$$
,

$$a = rac{N_{of} \cdot size_{if}^2 \cdot}{size_k^2},$$

 $b = N_{of} \cdot size_{if}^2,$
 $c = N_{if} \cdot size_k^2 \cdot size_{of}^2 \cdot N_{of},$

- Objective:
 - Find the optimized scheduling policy
 - To minimize external memory bandwidth
- Constraint:
 On-chip memory size
- Based on:
 - CNN layer parameters

Optimization result

Layer	Optimal	Req. of DRAM	Req. of DRAM
	< <i>x</i> ₁ , <i>x</i> ₂ >	BW with optimal	BW with 1-D
		2-D scheduling	scheduling
CONV1	<6,13>	14.5GB/s	123.9GB/s
CONV2	<6,4>	10.8GB/s	89.8GB/s
CONV3	<5,3>	11.5GB/s	92.6GB/s
CONV4	<7,9>	10.7GB/s	82.1GB/s
CONV5	<4,5>	11.6GB/s	94.6GB/s

The optimization can effectively reduce the requirement of off-chip memory bandwidth

Experiment Setup

Arria 10 GX FPGA Development Kit

- FPGA: Arria10 GX1150
- 1518 DSPs
- 2713 M20k memory
- 1GB DDR4 with 17GB/s BW
- Kernel implemented as an OpenCL IP library package using Verilog

Implementation Result

	Total	Ours	Percentage
DSP	1518	1320	86
BRAM	2713	1250	46
Logic	1506k	437k	43
Frequency		370 MHz	

VGG Performance

Layers	Number of Ops	Duration (ms)	Performance GOP/s
Conv	30.69G	11.9	2568
FC	0.073G	5.5	13
Total	30.76G	17.4	1790

Overall VGG Classification Throughput: 57 image/s

Performance Comparison

	Suda et. al [1]	Qiu et. al [2]	Ours
Platform	Stratix V GSD8	Zynq XC7Z045	Arria 10 GX1150
Performance(GOP/s)	117.8	136.9	1790
Performance Density (OPs/DSP/Cycle)	0.36	1.17	3.06
Power efficiency (GOP/J)	1.84	14.22	47.88

[1] N. Suda, et al. Throughput-Optimized OpenCL-based FPGA Accelerator for Large-Scale Convolutional Neural Networks. ISFPGA 2016
 [2] J. Qiu, et al. Going Deeper with Embedded FPGA Platform for Convolutional Neural Network. ISFPGA 2016

- Motivation
- Balance analysis model
- Our Work:
 - Multicasting among PEs
 - 2D Scheduling
- Performance comparison

Thanks!

Q&A