
Accelerating Binarized Convolutional Neural Networks 
with Software-Programmable FPGAs

Ritchie Zhao1, Weinan Song2, Wentao Zhang2, Tianwei Xing3, Jeng-Hau Lin4, 
Mani Srivastava3, Rajesh Gupta4, Zhiru Zhang1

1 Electrical and Computer Engineering, Cornell University
2 Electronics Engineering and Computer Science, Peking University
3 Electrical Engineering, University of California Los Angeles
4 Computer Science and Engineering, University of California San Diego



2

Rise of the Machines

▸ Deep learning has revolutionized AI research and the world
– Self-driving vehicles
– Machine transcription/translation
– AlphaGo

▸ Key algorithm is the convolutional neural network (CNN)



▸ Basics: 
– Convolutional (conv) layers in the front 
– Fully connected (dense) layers in the back 
– Pooling layers reduce the size of feature maps (fmaps)

▸ Enormous computational and memory requirements
– VGG-19 Network: 140 million floating-point parameters and 15 

billion floating-point operations per image [1]
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CNN Architecture

[1] K. Simonyan and A. Zisserman. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv:1409.15568, Apr 2015.



▸ Challenges
– CNN weights and fmaps don’t fit in on-chip memory
– Difficult for FPGAs to compete on floating-point throughput
– Deep learning frameworks for CPU/GPU 

(e.g. Theano, Caffe, TensorFlow)

▸ Opportunities
– Energy efficiency à deep learning on embedded platforms
– Networked FPGA cloud à overcome performance limitations 

through scale (MSR Catapult)
– Hardware CNN optimizations

• Data reordering and tiling (Zhang FPGA’15)
• Dynamic fixed-point quantization (Qui FPGA’16)
• Sparse model compression (Han ISCA’16, FPGA’17)
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CNNs on FPGA?
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Very Low Precision CNNs

▸ ML Research Papers:
– BinaryConnect [NIPS] Dec 2015
– BNN [arXiv] Mar 2016
– Ternary-Net [arXiv] May 2016
– XNOR-Net [ECCV] Oct 2016
– Local Binary CNNs [arXiv] Aug 2016

▸ Our Paper:
– FPGA implementation of BNN[2] for CIFAR-10 inference
– New model optimizations and hardware structures
– Open-source HLS code available

Near state-of-the-art 
on MNIST, CIFAR-10 
and SVHN 

Within 3% of state-of-
the-art on ImageNet

This 
Model

[2] M. Courbariaux et al. Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1    
or -1. arXiv:1602.02830, Feb 2016.
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Binarized Neural Networks (BNN)
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Key Differences
1. Inputs are binarized (−1 or +1)
2. Weights are binarized (−1 or +1)
3. Results are binarized after 

batch normalization

CNN

BNN



▸ 6 conv layers, 3 dense layers, 3 max pooling layers
▸ All conv filters are 3x3
▸ First conv layer takes in floating-point input
▸ 13.4 Mbits total model size (after hardware optimizations)
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BNN CIFAR-10 Architecture [2]

[2] M. Courbariaux et al. Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1    
or -1. arXiv:1602.02830, Feb 2016.
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Number of feature maps

Feature map
dimensions



1. Floating point ops replaced with binary logic ops

– Encode {+1,−1} as {0,1}  à multiplies become XORs
– Conv/dense layers do dot products à XOR and popcount
– Operations can map to LUT fabric as opposed to DSPs

2. Binarized weights may reduce total model size
– Fewer bits per weight may be offset by having more weights

8

Advantages of BNN

b1 b2 b1	⨯	b2
+1 +1 +1
+1 −1 −1
−1 +1 −1
−1 −1 +1

b1 b2 b1	XOR b2
0 0 0
0 1 1
1 0 1
1 1 0



Architecture Depth Param Bits
(Float)

Param Bits
(Fixed-Point)

Error Rate
(%)

ResNet [3]
(CIFAR-10)

164 51.9M 13.0M* 11.26

BNN [2] 9 - 13.4M 11.40
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BNN vs CNN Parameter Efficiency

▸ Comparison:
– Conservative assumption: ResNet can use 8-bit weights
– BNN is based on VGG (less advanced architecture)
– BNN seems to hold promise!

* Assuming each float param can be quantized to 8-bit fixed-point

[2] M. Courbariaux et al. Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1    
or -1. arXiv:1602.02830, Feb 2016.

[3] K. He, X. Zhang, S. Ren, and J. Sun. Identity Mappings in Deep Residual Networks. ECCV 2016.
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BNN Hardware Optimizations

Optimizations
1. Quantized the input image and batch norm parameters
2. Removed additive biases (no effect on accuracy)
3. Simplified batch norm and pooling computation

[2] M. Courbariaux et al. Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1 
or -1. arXiv:1602.02830, Feb 2016.

Accuracy Impact
BNN Model Test 

Error
Claimed in paper [2] 11.40%
Python out-of-the-box [2] 11.58%
C++ optimized model 11.19%
Accelerator 11.19%



▸ Target low-power embedded FPSoC
– Design must be resource efficient to fit the FPGA
– Leverage resource-sharing across layers (execute layers 

sequentially on a single module)

▸ Store all feature maps on-chip
– Binarization makes feature maps much smaller

▸ Use Xilinx SDSoC to synthesize RTL from C++ 
source
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Accelerator Design Goals



▸ Data buffers (A and B)
– Stores feature maps
– Alternately read from one 

and write to the other

▸ Weight buffer
– Store weights and batch 

norm parameters
– Reads from off-chip 

memory
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Accelerator Architecture
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▸ 3 compute units
– FP-conv  à input conv
– Bin-conv à binary conv
– Bin-FC    à binary dense

▸ DMA and controller
– Automatically generated 

by SDSoC
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Accelerator Architecture
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Accelerator Execution Example
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▸ Responsible for the binary conv layers, which take up 
most of the runtime

▸ Design Goals:
– Configurable for different feature map widths and different 

numbers of feature maps in a layer
– Scalable performance
– Exploits parallelism across input/output feature maps and within 

the pixels of each feature map

15

Bin-Conv Unit



▸ fin is the input parallelization factor
– Read fin words from the data buffer each cycle
– The words go to fin convolvers
– Each convolver contains a line buffer and convolution logic
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Bin-Conv Unit – Input Parallelization
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▸ fout is the output parallelization factor
– The convolvers generate partial conv sums for fout new maps
– Accumulate fout output feature maps in parallel
– Completed feature maps are pushed through pooling, batch 

norm, and binarization logic
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Bin-Conv Unit – Output Parallelization
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▸ The word size is the pixel parallelization factor
– Pixels (bits) in a word are processed in parallel
– Variable-width line buffer can be configured for different 

feature map widths
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Bin-Conv Unit – Pixel Parallelization
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▸ fin	/fout control how many input/output feature maps we 
process in parallel

– fin increases the number of line buffers
– fout increases the number of integer feature map buffers, 

pooling units, and batch norm units
– We expect increasing fin to be more area efficient

▸ In our implementation we fix fout= 1 and allow fin to vary
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fin– fout tradeoff



▸ Target platform: Zedboard with XC7Z020 FPGA
– 53K LUTs, 106K FFs
– 40 BRAMs, 220 DSPs

▸ Measurement
– Power: Physical meter
– Resource: Post-route report

▸ Platform Comparisons: 
– CPU: Intel Xeon 8-core 2.6GHz
– GPU: NVIDIA Tesla K40
– mGPU: NVIDIA Jetson TK1 embedded board
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Experiment Setup



▸ Resource:
– LUT and FF usage scaled 

with # of convolvers
– BRAM and DSP were 

mostly the same
▸ Runtime:

– Scales with # of convolvers, 
some overhead

▸ Final Design:
– 88% LUT utilization
– 5.9ms per image
– 143MHz
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Resource Usage and Scalability
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mGPU CPU GPU FPGA
Runtime per 
Image (ms)

90 14.8 0.73 5.94

Speedup 1x 6x 120x 15x
Power (W) 3.6 95 235 4.7
Energy
Efficiency

3.1 0.71 5.8 36
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Performance Comparison
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▸ vs. mGPU and CPU: significant improvement in performance and 
energy efficiency

▸ vs. GPU: 8x slower but 6x more energy efficient

▸ Binary conv layers see the most speedup on FPGA
– First (floating point) conv layer is not heavily parallelized
– Dense layers are bound by memory throughput
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Comparison with CNNs on FPGA

GOPS 
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conv 
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▸ Comparing CNN and BNN GOPS is not apples-to-apples…
– But it shows the binary ops we can squeeze out of an FPGA board
– Our device is considerably smaller than the other works’ here
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▸ Takeaways:
– Low precision CNNs on FPGA show great promise
– There is room for algorithmic improvement in binarized CNNs

▸ Code: https://github.com/cornell-zhang/bnn-fpga
– ‘master’ branch is the debug build (larger area)
– ‘optimized’ branch is the paper build

▸ Further Improvements:
– ‘conv1x1’ branch is a modified BNN with 60% model size 

reduction and negligible accuracy loss
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Conclusion



▸ 13.4 Mbits total model size (after hardware optimizations)
▸ 8.0 Mbits in the first dense layer alone!
▸ Convert first dense layer into fully convolutional layer

– Shrink second dense layer
▸ Model Size: 13.4M à 5.6M
▸ Test Error: 11.19% à 11.69%
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Improved BNN Architecture
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