Accelerating Binarized Convolutional Neural Networks with Software-Programmable FPGAs

<u>Ritchie Zhao</u>¹, Weinan Song², Wentao Zhang², Tianwei Xing³, Jeng-Hau Lin⁴, Mani Srivastava³, Rajesh Gupta⁴, Zhiru Zhang¹

- ¹ Electrical and Computer Engineering, Cornell University
- ² Electronics Engineering and Computer Science, Peking University
- ³ Electrical Engineering, University of California Los Angeles
- ⁴ Computer Science and Engineering, University of California San Diego

Rise of the Machines

- Deep learning has revolutionized AI research and the world
 - Self-driving vehicles
 - Machine transcription/translation
 - AlphaGo
- Key algorithm is the convolutional neural network (CNN)

CNN Architecture

Basics:

- Convolutional (conv) layers in the front
- Fully connected (dense) layers in the back
- Pooling layers reduce the size of feature maps (fmaps)
- Enormous computational and memory requirements
 - VGG-19 Network: 140 million floating-point parameters and 15 billion floating-point operations per image [1]

[1] K. Simonyan and A. Zisserman. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv:1409.15568, Apr 2015.

CNNs on FPGA?

Challenges

- CNN weights and fmaps don't fit in on-chip memory
- Difficult for FPGAs to compete on floating-point throughput
- Deep learning frameworks for CPU/GPU (e.g. Theano, Caffe, TensorFlow)

Opportunities

- Energy efficiency \rightarrow deep learning on embedded platforms
- Networked FPGA cloud → overcome performance limitations through scale (MSR Catapult)
- Hardware CNN optimizations
 - Data reordering and tiling (Zhang FPGA'15)
 - Dynamic fixed-point quantization (Qui FPGA'16)
 - Sparse model compression (Han ISCA'16, FPGA'17)

Very Low Precision CNNs

ML Research Papers:

	_	BinaryConnect	[NIPS]	Dec 2015	Near state-of-the-art		
This Model	_	BNN	[arXiv]	Mar 2016	and SVHN		
	_	Ternary-Net	[arXiv]	May 2016			
	_	XNOR-Net	[ECCV]	Oct 2016			
	_	Local Binary CNNs	[arXiv]	Aug 2016	Within 3% of state-of- the-art on ImageNet		

Our Paper:

- FPGA implementation of BNN[2] for CIFAR-10 inference
- New model optimizations and hardware structures
- Open-source HLS code available

[2] M. Courbariaux et al. Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1. arXiv:1602.02830, Feb 2016.

Binarized Neural Networks (BNN)

CNN

Key Differences

- 1. Inputs are binarized (-1 or +1)
- 2. Weights are binarized (-1 or +1)
- 3. Results are binarized after **batch normalization**

BNN

BNN CIFAR-10 Architecture [2]

- 6 conv layers, 3 dense layers, 3 max pooling layers
- All conv filters are 3x3
- First conv layer takes in floating-point input
- 13.4 Mbits total model size (after hardware optimizations)

^[2] M. Courbariaux et al. Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1. arXiv:1602.02830, Feb 2016.

Advantages of BNN

1. Floating point ops replaced with binary logic ops

b ₁	b ₂	$b_1 \times b_2$
+1	+1	+1
+1	-1	-1
-1	+1	-1
-1	-1	+1

b ₁	b ₂	b ₁ XOR b ₂
0	0	0
0	1	1
1	0	1
1	1	0

- Encode $\{+1,-1\}$ as $\{0,1\}$ → multiplies become XORs
- Conv/dense layers do dot products \rightarrow XOR and popcount
- Operations can map to LUT fabric as opposed to DSPs

2. Binarized weights may reduce total model size

- Fewer bits per weight may be offset by having more weights

BNN vs CNN Parameter Efficiency

Architecture	Depth	Param Bits (Float)	Param Bits (Fixed-Point)	Error Rate (%)
ResNet [3] (CIFAR-10)	164	51.9M	13.0M*	11.26
BNN [2]	9	-	13.4M	11.40

* Assuming each float param can be quantized to 8-bit fixed-point

Comparison:

- Conservative assumption: ResNet can use 8-bit weights
- BNN is based on VGG (less advanced architecture)
- BNN seems to hold promise!

[3] K. He, X. Zhang, S. Ren, and J. Sun. Identity Mappings in Deep Residual Networks. ECCV 2016.

^[2] M. Courbariaux et al. Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1. arXiv:1602.02830, Feb 2016.

BNN Hardware Optimizations

Optimizations

- 1. Quantized the input image and batch norm parameters
- 2. Removed additive biases (no effect on accuracy)
- 3. Simplified batch norm and pooling computation

BNN Model	Test Error
Claimed in paper [2]	11.40%
Python out-of-the-box [2]	11.58%
C++ optimized model	11.19%
Accelerator	11.19%

Accuracy Impact

[2] M. Courbariaux et al. Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1. arXiv:1602.02830, Feb 2016.

Accelerator Design Goals

Target low-power embedded FPSoC

- Design must be resource efficient to fit the FPGA
- Leverage resource-sharing across layers (execute layers sequentially on a single module)

Store all feature maps on-chip

– Binarization makes feature maps much smaller

Use Xilinx SDSoC to synthesize RTL from C++ source

Accelerator Architecture

Data buffers (A and B)

- Stores feature maps
- Alternately read from one and write to the other

Weight buffer

- Store weights and batch norm parameters
- Reads from off-chip memory

Accelerator Architecture

3 compute units

- − FP-conv \rightarrow input conv
- − Bin-conv \rightarrow binary conv
- Bin-FC \rightarrow binary dense

DMA and controller

 Automatically generated by SDSoC

Accelerator Execution Example

Off-Chip Memory

Bin-Conv Unit

Responsible for the binary conv layers, which take up most of the runtime

Design Goals:

- Configurable for different feature map widths and different numbers of feature maps in a layer
- Scalable performance
- Exploits parallelism across input/output feature maps and within the pixels of each feature map

Bin-Conv Unit – Input Parallelization

► *f*_{in} is the input parallelization factor

- Read *f*_{in} words from the data buffer each cycle
- The words go to *f*_{in} **convolvers**
- Each convolver contains a line buffer and convolution logic

Bin-Conv Unit – Output Parallelization

*f*_{out} is the output parallelization factor

- The convolvers generate partial conv sums for f_{out} new maps
- Accumulate *f_{out}* output feature maps in parallel
- Completed feature maps are pushed through pooling, batch norm, and binarization logic

Bin-Conv Unit – Pixel Parallelization

The word size is the pixel parallelization factor

- Pixels (bits) in a word are processed in parallel
- Variable-width line buffer can be configured for different feature map widths

$f_{in} - f_{out}$ tradeoff

- *f_{in} /f_{out}* control how many input/output feature maps we process in parallel
 - f_{in} increases the number of line buffers
 - f_{out} increases the number of integer feature map buffers, pooling units, and batch norm units
 - We expect increasing f_{in} to be more area efficient
- In our implementation we fix $f_{out} = 1$ and allow f_{in} to vary

Experiment Setup

Target platform: Zedboard with XC7Z020 FPGA

- 53K LUTs, 106K FFs
- 40 BRAMs, 220 DSPs

Measurement

- Power: Physical meter
- Resource: Post-route report

Platform Comparisons:

- CPU: Intel Xeon 8-core 2.6GHz
- GPU: NVIDIA Tesla K40
- mGPU: NVIDIA Jetson TK1 embedded board

Resource Usage and Scalability

Resource:

- LUT and FF usage scaled with # of convolvers
- BRAM and DSP were mostly the same

Runtime:

 Scales with # of convolvers, some overhead

Final Design:

- 88% LUT utilization
- 5.9ms per image
- 143MHz

Performance Comparison

					Runtime Distribution						
	mGPU	CPU	GPU	FPGA	100%]
Runtime per Image (ms)	90	14.8	0.73	5.94	80%						FP-Conv
Speedup	1x	6x	120x	15x	60%						Bin-Conv
Power (W)	3.6	95	235	4.7	40%						- BIN-FC
Energy Efficiency	3.1	0.71	5.8	36	20% 0%						
						CPU	J	GPU		FPGA	

- vs. mGPU and CPU: significant improvement in performance and energy efficiency
- **vs. GPU**: 8x slower but 6x more energy efficient
- Binary conv layers see the most speedup on FPGA
 - First (floating point) conv layer is not heavily parallelized
 - Dense layers are bound by memory throughput

Comparison with CNNs on FPGA

Comparing CNN and BNN GOPS is not apples-to-apples...

- But it shows the binary ops we can squeeze out of an FPGA board
- Our device is considerably smaller than the other works' here

Conclusion

Takeaways:

- Low precision CNNs on FPGA show great promise
- There is room for algorithmic improvement in binarized CNNs
- Code: <u>https://github.com/cornell-zhang/bnn-fpga</u>
 - 'master' branch is the debug build (larger area)
 - 'optimized' branch is the paper build

Further Improvements:

 - 'conv1x1' branch is a modified BNN with 60% model size reduction and negligible accuracy loss

Improved BNN Architecture

- 13.4 Mbits total model size (after hardware optimizations)
- 8.0 Mbits in the first dense layer alone!
- Convert first dense layer into fully convolutional layer
 - Shrink second dense layer
- ► **Model Size:** 13.4M → 5.6M
- ► Test Error: 11.19% → 11.69%