
Accelerating Binarized Convolutional Neural Networks
with Software-Programmable FPGAs

Ritchie Zhao1, Weinan Song2, Wentao Zhang2, Tianwei Xing3, Jeng-Hau Lin4,
Mani Srivastava3, Rajesh Gupta4, Zhiru Zhang1

1 Electrical and Computer Engineering, Cornell University
2 Electronics Engineering and Computer Science, Peking University
3 Electrical Engineering, University of California Los Angeles
4 Computer Science and Engineering, University of California San Diego

2

Rise of the Machines

▸ Deep learning has revolutionized AI research and the world
– Self-driving vehicles
– Machine transcription/translation
– AlphaGo

▸ Key algorithm is the convolutional neural network (CNN)

▸ Basics:
– Convolutional (conv) layers in the front
– Fully connected (dense) layers in the back
– Pooling layers reduce the size of feature maps (fmaps)

▸ Enormous computational and memory requirements
– VGG-19 Network: 140 million floating-point parameters and 15

billion floating-point operations per image [1]

3

CNN Architecture

[1] K. Simonyan and A. Zisserman. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv:1409.15568, Apr 2015.

▸ Challenges
– CNN weights and fmaps don’t fit in on-chip memory
– Difficult for FPGAs to compete on floating-point throughput
– Deep learning frameworks for CPU/GPU

(e.g. Theano, Caffe, TensorFlow)

▸ Opportunities
– Energy efficiency à deep learning on embedded platforms
– Networked FPGA cloud à overcome performance limitations

through scale (MSR Catapult)
– Hardware CNN optimizations

• Data reordering and tiling (Zhang FPGA’15)
• Dynamic fixed-point quantization (Qui FPGA’16)
• Sparse model compression (Han ISCA’16, FPGA’17)

4

CNNs on FPGA?

5

Very Low Precision CNNs

▸ ML Research Papers:
– BinaryConnect [NIPS] Dec 2015
– BNN [arXiv] Mar 2016
– Ternary-Net [arXiv] May 2016
– XNOR-Net [ECCV] Oct 2016
– Local Binary CNNs [arXiv] Aug 2016

▸ Our Paper:
– FPGA implementation of BNN[2] for CIFAR-10 inference
– New model optimizations and hardware structures
– Open-source HLS code available

Near state-of-the-art
on MNIST, CIFAR-10
and SVHN

Within 3% of state-of-
the-art on ImageNet

This
Model

[2] M. Courbariaux et al. Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1
or -1. arXiv:1602.02830, Feb 2016.

6

Binarized Neural Networks (BNN)

∗
Input Map

2.4		6.2		…
3.3		1.8

…

Weights

0.8		0.1		
0.3		0.8

∗
Input Map

(Binary)

1			−1			…
1					1

…

Weights
(Binary)

1		−1		
1		−1

=

Output Map

5.0		9.1		…
4.3		7.8

…

=

𝒙23
(Integer)

1				−3		…
3				−7

…

𝒚23 =
𝒙23 − 𝜇
𝜎7 − 𝜖� 𝛾 + 𝛽

Output Map
(Binary)

1			−1			…
1			−1	

…

𝒛23 = >+1			if	𝒚23 ≥ 0				
−1			otherwise		

→

Batch Normalization

Binarization

Key Differences
1. Inputs are binarized (−1 or +1)
2. Weights are binarized (−1 or +1)
3. Results are binarized after

batch normalization

CNN

BNN

▸ 6 conv layers, 3 dense layers, 3 max pooling layers
▸ All conv filters are 3x3
▸ First conv layer takes in floating-point input
▸ 13.4 Mbits total model size (after hardware optimizations)

7

BNN CIFAR-10 Architecture [2]

[2] M. Courbariaux et al. Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1
or -1. arXiv:1602.02830, Feb 2016.

32x32
16x16

8x8
4x4

3 128
128 256

256 512
512

1024 1024

10

Number of feature maps

Feature map
dimensions

1. Floating point ops replaced with binary logic ops

– Encode {+1,−1} as {0,1} à multiplies become XORs
– Conv/dense layers do dot products à XOR and popcount
– Operations can map to LUT fabric as opposed to DSPs

2. Binarized weights may reduce total model size
– Fewer bits per weight may be offset by having more weights

8

Advantages of BNN

b1 b2 b1	⨯	b2
+1 +1 +1
+1 −1 −1
−1 +1 −1
−1 −1 +1

b1 b2 b1	XOR b2
0 0 0
0 1 1
1 0 1
1 1 0

Architecture Depth Param Bits
(Float)

Param Bits
(Fixed-Point)

Error Rate
(%)

ResNet [3]
(CIFAR-10)

164 51.9M 13.0M* 11.26

BNN [2] 9 - 13.4M 11.40

9

BNN vs CNN Parameter Efficiency

▸ Comparison:
– Conservative assumption: ResNet can use 8-bit weights
– BNN is based on VGG (less advanced architecture)
– BNN seems to hold promise!

* Assuming each float param can be quantized to 8-bit fixed-point

[2] M. Courbariaux et al. Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1
or -1. arXiv:1602.02830, Feb 2016.

[3] K. He, X. Zhang, S. Ren, and J. Sun. Identity Mappings in Deep Residual Networks. ECCV 2016.

10

BNN Hardware Optimizations

Optimizations
1. Quantized the input image and batch norm parameters
2. Removed additive biases (no effect on accuracy)
3. Simplified batch norm and pooling computation

[2] M. Courbariaux et al. Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1
or -1. arXiv:1602.02830, Feb 2016.

Accuracy Impact
BNN Model Test

Error
Claimed in paper [2] 11.40%
Python out-of-the-box [2] 11.58%
C++ optimized model 11.19%
Accelerator 11.19%

▸ Target low-power embedded FPSoC
– Design must be resource efficient to fit the FPGA
– Leverage resource-sharing across layers (execute layers

sequentially on a single module)

▸ Store all feature maps on-chip
– Binarization makes feature maps much smaller

▸ Use Xilinx SDSoC to synthesize RTL from C++
source

11

Accelerator Design Goals

▸ Data buffers (A and B)
– Stores feature maps
– Alternately read from one

and write to the other

▸ Weight buffer
– Store weights and batch

norm parameters
– Reads from off-chip

memory

12

Accelerator Architecture

Data	B
Data	A

Buffers

Weights

Compute	Units

Controller

DM
A

FP-Conv

Bin-Conv

Bin-FC

O
ff-chip	m

em
CPU

▸ 3 compute units
– FP-conv à input conv
– Bin-conv à binary conv
– Bin-FC à binary dense

▸ DMA and controller
– Automatically generated

by SDSoC

13

Accelerator Architecture

Data	B
Data	A

Buffers

Weights

Compute	Units

Controller

DM
A

FP-Conv

Bin-Conv

Bin-FC

O
ff-chip	m

em
CPU

L3-2L3-1 L3-2L3-1

B
A

Data	Buffers

Weights

Compute	Units

Controller
DM

A

FP-Conv

Bin-Conv

Bin-FC
L2

14

Accelerator Execution Example

Input Image

Parameters

L1

L1 Fmaps

L1

L2 Fmaps

Off-Chip Memory

L2

L3
Fmaps2

L3
Fmaps1

Data

Layer 1

Layer 2

Layer 3 L3-1 L3-2

▸ Responsible for the binary conv layers, which take up
most of the runtime

▸ Design Goals:
– Configurable for different feature map widths and different

numbers of feature maps in a layer
– Scalable performance
– Exploits parallelism across input/output feature maps and within

the pixels of each feature map

15

Bin-Conv Unit

▸ fin is the input parallelization factor
– Read fin words from the data buffer each cycle
– The words go to fin convolvers
– Each convolver contains a line buffer and convolution logic

16

Bin-Conv Unit – Input Parallelization

fin

…

Convolver ∗Line	Buffer

Convolver ∗Line	Buffer

Data	Buffer	
(Bank	1)

Data	Buffer	
(Bank	fin)

…fin

▸ fout is the output parallelization factor
– The convolvers generate partial conv sums for fout new maps
– Accumulate fout output feature maps in parallel
– Completed feature maps are pushed through pooling, batch

norm, and binarization logic

17

Bin-Conv Unit – Output Parallelization

Pooling,	
Bnorm,	
Binarize

fout output	
feature	mapsfin

…

Convolver ∗Line	Buffer

Convolver ∗Line	Buffer

Convolvers

Data	Buffer	
(Bank	1)

Data	Buffer	
(Bank	fin)

Accumulators

fout

…fin + +

Integer
buffer

▸ The word size is the pixel parallelization factor
– Pixels (bits) in a word are processed in parallel
– Variable-width line buffer can be configured for different

feature map widths

18

Bin-Conv Unit – Pixel Parallelization

Pooling,	
Bnorm,	
Binarize

fout output	
feature	mapsfin

…

Convolver ∗Line	Buffer

Convolver ∗Line	Buffer

Convolvers

Data	Buffer	
(Bank	1)

Data	Buffer	
(Bank	fin)

Accumulators

fout

…fin + +

Integer
buffer

▸ fin	/fout control how many input/output feature maps we
process in parallel

– fin increases the number of line buffers
– fout increases the number of integer feature map buffers,

pooling units, and batch norm units
– We expect increasing fin to be more area efficient

▸ In our implementation we fix fout= 1 and allow fin to vary

19

fin– fout tradeoff

▸ Target platform: Zedboard with XC7Z020 FPGA
– 53K LUTs, 106K FFs
– 40 BRAMs, 220 DSPs

▸ Measurement
– Power: Physical meter
– Resource: Post-route report

▸ Platform Comparisons:
– CPU: Intel Xeon 8-core 2.6GHz
– GPU: NVIDIA Tesla K40
– mGPU: NVIDIA Jetson TK1 embedded board

20

Experiment Setup

▸ Resource:
– LUT and FF usage scaled

with # of convolvers
– BRAM and DSP were

mostly the same
▸ Runtime:

– Scales with # of convolvers,
some overhead

▸ Final Design:
– 88% LUT utilization
– 5.9ms per image
– 143MHz

21

Resource Usage and Scalability

0%

20%

40%

60%

80%

100%

1 2 4 8

Ut
ili
za
tio

n

Convolvers

Resource	Usage

LUT
FF
BRAM

0

4

8

12

16

20

1 2 4 8

Ru
nt
im

e	
(m

s)

Convolvers

Runtime

47K

94

46K

17.5 ms

5.9 ms

25K LUTs
86 BRAMs

28K FFs

mGPU CPU GPU FPGA
Runtime per
Image (ms)

90 14.8 0.73 5.94

Speedup 1x 6x 120x 15x
Power (W) 3.6 95 235 4.7
Energy
Efficiency

3.1 0.71 5.8 36

22

Performance Comparison

0%

20%

40%

60%

80%

100%

CPU GPU FPGA

Runtime	Distribution

FP-Conv
Bin-Conv
Bin-FC

▸ vs. mGPU and CPU: significant improvement in performance and
energy efficiency

▸ vs. GPU: 8x slower but 6x more energy efficient

▸ Binary conv layers see the most speedup on FPGA
– First (floating point) conv layer is not heavily parallelized
– Dense layers are bound by memory throughput

23

Comparison with CNNs on FPGA

GOPS

Power (W)

conv
only

DSPs

kLUTs

▸ Comparing CNN and BNN GOPS is not apples-to-apples…
– But it shows the binary ops we can squeeze out of an FPGA board
– Our device is considerably smaller than the other works’ here

0 2 4 6 8 10
Normalized to Lowest

Zhang FPGA'15 (32f)
Suda FPGA'16 (8-16b)
Qiu FPGA'16 (16b)
This Work

all
layers

208

319

4.7

3

118
137

137
188

19
9.6

760
780

120
183

47

▸ Takeaways:
– Low precision CNNs on FPGA show great promise
– There is room for algorithmic improvement in binarized CNNs

▸ Code: https://github.com/cornell-zhang/bnn-fpga
– ‘master’ branch is the debug build (larger area)
– ‘optimized’ branch is the paper build

▸ Further Improvements:
– ‘conv1x1’ branch is a modified BNN with 60% model size

reduction and negligible accuracy loss

24

Conclusion

▸ 13.4 Mbits total model size (after hardware optimizations)
▸ 8.0 Mbits in the first dense layer alone!
▸ Convert first dense layer into fully convolutional layer

– Shrink second dense layer
▸ Model Size: 13.4M à 5.6M
▸ Test Error: 11.19% à 11.69%

25

Improved BNN Architecture

32x32
16x16

8x8

3 128
128 256

256 512
512

1024 1024

10

Number of feature maps

Fully
Convolutional

128
512

4x4

