

Efficient Memory Partitioning for Parallel Data Access via Data Reuse

Jincheng Su¹, Fan Yan¹, Xuan Zeng¹ and Dian Zhou¹²

¹Fudan University, Shanghai, China

²University of Texas at Dallas, USA

Feb 22, 2016

BACKGROUND

 \blacksquare **Loop pipelining and parallel access** \blacksquare **Solutions for parallel access** \blacksquare Memory partitioning problem ■ State-of-the-art partition scheme

Loop pipelining

Given a set of references to memory in a loop nest, in order to enable loop pipelining, how to map them to on-chip memory so as to efficiently support parallel access.

Solutions for parallel access

■ Partition the array A to *m* memory banks given *m* references

Memory Partitioning

Hopefully no extra storage overhead!

Original memory array Memory banks

Memory Partitioning Problem

 $P_A =$ $(0, 0)^T$ $(0, 1)^T$ $(0, 2)^T$ $(1, 0)^T$ $(1, 2)^T$ $(2, 0)^T$ $(2, 1)^T$ $(2, 2)^T$ *Access Pattern sharing the same coefficient matrix A*

Memory Partitioning Problem

*Bank mapping problem***:**

Minimize N Subject To $\forall \vec{x}_j, \vec{x}_k \in M, \vec{x}_j \neq \vec{x}_k, B(\vec{x}_j) \neq B(\vec{x}_k) || F(\vec{x}_j) \neq F(\vec{x}_k),$
 $\forall \vec{i} \in D, \forall \vec{p}_j, \vec{p}_k \in P, \vec{p}_j \neq \vec{p}_k, B(\vec{p}_j) \neq B(\vec{p}_k).$

*Intra-bank offsetting problem***:**

For references mapped to the same bank, give each of them a unique offset, such that there is no access conflict and the storage overhead is minimum.

Some state-of-the-art partition schemes

For multi-dimensional memory arrays

■ LTB (Linear Transformation Based memory partitioning) **Bank index:** $B(x) = (\alpha \cdot x)\%N$

Intra-bank offset: padding method

■ GMP (Generalized Memory Partitioning)

Bank index:
$$
B(x) = \frac{\alpha \cdot x}{B} \%
$$

Intra-bank offset: improved padding method

Polyhedral model to find optimal α

■ **EMP** (Efficient Memory Partitioning)

Bank index: $B(x) = (\alpha \cdot x)\%N$

Intra-bank offset: improved padding method

Fast heuristic algorithm to construct a valid α

Utilize the opportunities of data reuse

The proposed memory partitioning algorithm

The key idea

Use the on-chip registers to cache the reusable data.

Data reuse chains

(*c*) Data reuse chain

Implementing Data reuse chains

Constructing data reuse chains

$$
for (i_0 = 0; i_0 < 1918; i_0++)\{\n for (i_1 = 0; i_1 < 1078; i_1++)\n {\n ... \n for (i_0 = 0; i_0 < N_0; i_0++)\n {\n for (i_0 = 0; i_0 < N_0; i_0++)\n {\n for (i_1 = 0, i_2 = 0; i_1 < N_1 && i_2 < N_2; i_1++, i_2=i_2+2)\n {\n ... \n }\n }\n}
$$

*Reuse theorem***:**

Denote δ *a move for iteration vector i of a loop nest.* Given *two different offsets* c_j *and* c_k , $c_j \neq c_k$ *in an access pattern sharing the same coefficient matrix A, if* $c_j - c_k = \lambda A \delta$ *where* λ *is a non-negative integer, then the data element referenced by* c_j *can be reused as the data referenced* by c_k *after* λ *iterations.*

Constructing data reuse chains

$$
P_A = \begin{pmatrix} (0, 0)^T & (0, 1)^T & (0, 2)^T \\ (1, 0)^T & (1, 2)^T \\ (2, 0)^T & (2, 1)^T & (2, 2)^T \end{pmatrix} \qquad A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \delta = \begin{pmatrix} 0 \\ 1 \end{pmatrix}
$$

The new pattern which will be delivered to the memory partitioning algorithm

Bank Mapping

By assumptions 3 and 4, the corollary holds:

Corollary 1. Two references $\vec{x}_j = A \cdot \vec{j} + \vec{c}_j$ and $\vec{x}_k =$ $A \cdot \vec{k} + \vec{c}_k$ are mapped to the same bank by the mapping function $B(\vec{x}) = (\vec{\alpha} \cdot \vec{x})\%N$, if and only if $\vec{\alpha} \cdot (\vec{c}_j - \vec{c}_k)$ is exactly divisible by N

Padding method

[1] *Y. Wang, P. Li, and J. Cong, "Theory and algorithm for generalized memory partitioning in high-level synthesis," in Proceedings of the 2014 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA), 2014.*

Revised padding method

The case where some component of the partition vector α are zero.

Figure 5: Mapping result for the case that $\vec{\alpha} = (1,0)$.

Revised padding method

A 3-dimensional access pattern.

The partition vector α would be (1, 3, 0)^T.

Partition factor N would be 9.

Revised padding method

\n- \n Re-arrange
$$
\alpha = (\alpha_0, \alpha_1, \dots, \alpha_{d-1})
$$
, such that $\alpha_0, \alpha_1, \dots, \alpha_{k-1} \neq 0$, $\alpha_k, \alpha_{k+1, \dots, \alpha_{d-1}} = 0$.\n
\n- \n Re-arrange $x = (x_0, x_1, \dots, x_{d-1})$ correspondingly.\n
\n- \n Apply padding to the k-1 dimension.\n
\n

Storage overhead:
$$
\left(\lceil \frac{w_{k-1}}{N} \rceil \times N - w_{k-1}\right) \times \prod_{j=0}^{k-2} \prod_{j=k}^{d-1} w_j.
$$

If k = 1*, no padding is needed, which, by our memory partitioning scheme, is a common case!*

Benchmarks

Experimental result & comparison

Flip-Flops

LUTs

Experimental result & comparison

Table 1: Experimental results and comparisons for overall resources

 1 FF_{total} is the total usage of Flip-Flops by the memory system

Experimental result & comparison

Table 2: Storage Overhead Comparisons.

Conclusion

Contributions:

- **n** Propose to cache the reusable data by on-chip registers of **FPGA**
- **Propose a new data reuse strategy**
- **Revise the padding method to generate intra-bank offset more efficiently.**

Results:

Compared with the GMP partition scheme,

- ours can reduce the required number of banks by 59.8% on **average.**
- The number of LUTs is reduced by 78.6%, Flip-Flops by 66.8%, **DSP48Es by 41.7% on average.**
- While the performance is improved slightly.

Thanks

Q&A