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nState-of-the-art	partition	scheme



Loop pipelining 

Given a set of references to memory in a loop nest, in order
to enable loop pipelining, how to map them to on-chip
memory so as to efficiently support parallel access.

1:    define A[1920][1080], Z[1920][1080]
2:     for (i0 = 0; i0 < 1918; i0++){
3:            for(i1 = 0; i1 < 1078; i1++){
4: Z[i0+1][i1+1] = foo( A[i0][i1],  A[i0][i1+1],  A[i0][i1+2],  A[i0+1][i1],

 A[i0+1][i1+2],  A[i0+2][i1],  A[i0+2][i1+1],  A[i0+2][i1+2])  
                } 
        }
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Loop pipelining



n Partition	the	array	A to	m memory	banks	given	m references

Solutions for parallel access 

Memory	Partitioning
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Original memory array Memory banks

Hopefully	no	extra	storage	overhead!



Memory Partitioning Problem

1:    define A[1920][1080], Z[1920][1080]
2:     for (i0 = 0; i0 < 1918; i0++){
3:            for(i1 = 0; i1 < 1078; i1++){
4: Z[i0+1][i1+1] = foo( A[i0][i1],  A[i0][i1+1],  A[i0][i1+2],  A[i0+1][i1],

 A[i0+1][i1+2],  A[i0+2][i1],  A[i0+2][i1+1],  A[i0+2][i1+2])  
                } 
        } Affine memory reference

𝒙 = 𝐴𝒊 + 𝒄 =	 1 0
0 1

𝑖0
𝑖1

+ 1
2

Iteration space:	
𝔻 = 𝒊 0

0 ≤ 𝒊 < 1918
1078

i is called iteration vector

Data space: 𝕄

𝑃𝐴 =
(0, 0)T  (0, 1)T  (0, 2)T

(1, 0)T           (1, 2)T

(2, 0)T  (2, 1)T  (2, 2)T

Access Pattern
sharing the same 

coefficient matrix A



Memory Partitioning Problem

Bank mapping problem:

Intra-bank offsetting problem:
For references mapped to the same bank, give each of

them a unique offset, such that there is no access conflict and the
storage overhead is minimum.



Some state-of-the-art partition schemes

For	multi-dimensional	memory	arrays
n LTB (Linear	Transformation	Based	memory	partitioning)

Bank	index:		𝐵 𝑥 = 𝛼 7 𝑥 %𝑁
Intra-bank	offset:	padding	method

n GMP (Generalized	Memory	Partitioning)

Bank	index:		𝐵 𝑥 = :7;
< %𝑁

Intra-bank	offset:	improved	padding	method
Polyhedral	model	to	find	optimal	𝛼

n EMP (Efficient	Memory	Partitioning)
Bank	index:		𝐵 𝑥 = 𝛼 7 𝑥 %𝑁
Intra-bank	offset:	improved	padding	method

Fast	heuristic	algorithm	to	construct	a	valid	𝛼



Utilize the opportunities of data reuse
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The proposed
memory partitioning algorithm

The key idea
Use the on-chip registers to cache the reusable data.



Data reuse chains
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Implementing Data reuse chains
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Constructing data reuse chains

for (i0 = 0; i0 < N0; i0++){
for(i1 = 0, i2 = 0; i1 < N1&& i2 <N2; i1++, i2=i2+2){

… 
…

for (i0 = 0; i0 < 1918; i0++){
for(i1 = 0; i1 < 1078; i1++){
…

…

Move：𝜹 = 	 01

Move：𝜹 = 	
0
1
2

Reuse theorem:
Denote 𝜹 a move for iteration vector 𝒊 of a loop nest. Given two

different offsets 𝒄𝒋 and 𝒄𝒌, 𝒄𝒋 ≠ 𝒄𝒌 in an access pattern sharing the same
coefficient matrix A, if 𝒄𝒋 − 𝒄𝒌 = 𝜆𝐴𝜹 where λ is a non-negative integer,
then the data element referenced by 𝒄𝒋 can be reused as the data
referenced by 𝒄𝒌 after λ iterations.



Constructing data reuse chains

𝑃𝐴 =
(0, 0)T  (0, 1)T  (0, 2)T

(1, 0)T           (1, 2)T

(2, 0)T  (2, 1)T  (2, 2)T

(0, 0)T ←  (0, 1)T ←  (0, 2)T

(1, 0)T   ←     ←     (1, 2)T

(2, 0)T ←  (2, 1)T ← 		(2, 2)T

The new pattern which will be delivered
to the memory partitioning algorithm

𝜹 = 	 01𝐴 = 	 1 0
0 1

𝜆 = 1 𝜆 = 1



Bank Mapping

By	assumptions	3	and	4,	the	corollary	holds:

𝐵 𝒙 = 𝜶 7 𝒙 %𝑁Design choice:
Partition vector Partition factor



Padding method

Storage overhead:

(this picture is selected from [1])

[1] Y. Wang, P. Li, and J. Cong, “Theory and algorithm for generalized memory partitioning in high-level synthesis,” 
in Proceedings of the 2014 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA), 2014.



Revised padding method

The	case	where	some	component	of	the	partition	vector	
𝜶 are	zero.



Revised padding method
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A	3-dimensional	access	pattern.

The	partition	vector	𝜶would	be	(1,	3,	0)T.	

Partition	factor		𝑁 would	be	9.



Revised padding method

Storage overhead:

If k = 1, no padding is needed, which, by our memory partitioning scheme, 
is a common case!

n Re-arrange	𝜶 = 𝛼0, 𝛼1, … , 𝛼GHI ,	such	that	𝛼0, 𝛼1, … , 𝛼JHI ≠
0,	𝛼𝑘,𝛼𝑘 + 1, … , 𝛼GHI = 0.	

n Re-arrange	𝒙 = 𝑥0, 𝑥1,… , 𝑥GHI correspondingly.
n Apply	padding	to	the	k-1	dimension.



Benchmarks

(a).BICUBIC (b).DENOISE (c).MOTION_LH (d).DECONV

(e).PREWITT (f).SOBEL (g).LOG (h).CANNY



Experimental result & comparison



Experimental result & comparison

# Bank # LUTs # FFs # DSPs Clock

Average
improvement 59.8% 78.6% 66.8% 41.7% 14.0%



Experimental result & comparison



Conclusion

Contributions:
n Propose	to	cache	the	reusable	data	by	on-chip	registers	of	

FPGA
n Propose	a	new	data	reuse	strategy	
n Revise	the	padding	method to	generate	intra-bank	offset	

more	efficiently.

Results:
Compared	with	the	GMP	partition	scheme,		
n ours	can	reduce	the	required	number	of	banks	by 59.8%	on	

average.
n The	number	of	LUTs	is	reduced	by	78.6%, Flip-Flops	by 66.8%,

DSP48Es	by 41.7%	on	average.
n While	the	performance	is	improved	slightly.




