
Efficient Memory Partitioning
for Parallel Data Access via Data Reuse

Jincheng	Su1,	Fan	Yan1,	Xuan	Zeng1 and	Dian	Zhou12

1Fudan University, Shanghai, China
2University of Texas at Dallas, USA

Feb	22,	2016

BACKGROUND

nLoop	pipelining	and	parallel	access

nSolutions	for	parallel	access

nMemory	partitioning	problem

nState-of-the-art	partition	scheme

Loop pipelining

Given a set of references to memory in a loop nest, in order
to enable loop pipelining, how to map them to on-chip
memory so as to efficiently support parallel access.

1: define A[1920][1080], Z[1920][1080]
2: for (i0 = 0; i0 < 1918; i0++){
3: for(i1 = 0; i1 < 1078; i1++){
4: Z[i0+1][i1+1] = foo(A[i0][i1], A[i0][i1+1], A[i0][i1+2], A[i0+1][i1],

 A[i0+1][i1+2], A[i0+2][i1], A[i0+2][i1+1], A[i0+2][i1+2])
 }
 }

8

……

Loop pipelining

n Partition	the	array	A to	m memory	banks	given	m references

Solutions for parallel access

Memory	Partitioning
.
.
.

.

.

.

Original memory array Memory banks

Hopefully	no	extra	storage	overhead!

Memory Partitioning Problem

1: define A[1920][1080], Z[1920][1080]
2: for (i0 = 0; i0 < 1918; i0++){
3: for(i1 = 0; i1 < 1078; i1++){
4: Z[i0+1][i1+1] = foo(A[i0][i1], A[i0][i1+1], A[i0][i1+2], A[i0+1][i1],

 A[i0+1][i1+2], A[i0+2][i1], A[i0+2][i1+1], A[i0+2][i1+2])
 }
 } Affine memory reference

𝒙 = 𝐴𝒊 + 𝒄 =	 1 0
0 1

𝑖0
𝑖1

+ 1
2

Iteration space:	
𝔻 = 𝒊 0

0 ≤ 𝒊 < 1918
1078

i is called iteration vector

Data space: 𝕄

𝑃𝐴 =
(0, 0)T (0, 1)T (0, 2)T

(1, 0)T (1, 2)T

(2, 0)T (2, 1)T (2, 2)T

Access Pattern
sharing the same

coefficient matrix A

Memory Partitioning Problem

Bank mapping problem:

Intra-bank offsetting problem:
For references mapped to the same bank, give each of

them a unique offset, such that there is no access conflict and the
storage overhead is minimum.

Some state-of-the-art partition schemes

For	multi-dimensional	memory	arrays
n LTB (Linear	Transformation	Based	memory	partitioning)

Bank	index:		𝐵 𝑥 = 𝛼 7 𝑥 %𝑁
Intra-bank	offset:	padding	method

n GMP (Generalized	Memory	Partitioning)

Bank	index:		𝐵 𝑥 = :7;
< %𝑁

Intra-bank	offset:	improved	padding	method
Polyhedral	model	to	find	optimal	𝛼

n EMP (Efficient	Memory	Partitioning)
Bank	index:		𝐵 𝑥 = 𝛼 7 𝑥 %𝑁
Intra-bank	offset:	improved	padding	method

Fast	heuristic	algorithm	to	construct	a	valid	𝛼

Utilize the opportunities of data reuse

i0

(a)

i10 1 2 3 4

0

1

2

(d)

i1

i0

0 1 2 3 4

0

1

2

(b)
i0

i1

iter.1
iter.2

0 1 2 3 4

0

1

2

(c)
i0

i1

iter.1 iter.3

0 1 2 3 4

0

1

2

The proposed
memory partitioning algorithm

The key idea
Use the on-chip registers to cache the reusable data.

Data reuse chains

RD23
c1 c2 c3 c4

RD14

(b)

c1 c2 c3

c6 c7 c8

c4 c5

c1 c2 c3 c4

RD1(total) RD3 RD3 RD4

(c) Data reuse chain

RD23
c1 c2 c3 c4

RD13 RD24

RD14

(a) Data reuse graph

Implementing Data reuse chains

0 1 2 3 4 5 6 7 i

(a)

(b)

Registers

References

References

Registers

Constructing data reuse chains

for (i0 = 0; i0 < N0; i0++){
for(i1 = 0, i2 = 0; i1 < N1&& i2 <N2; i1++, i2=i2+2){

…
…

for (i0 = 0; i0 < 1918; i0++){
for(i1 = 0; i1 < 1078; i1++){
…

…

Move：𝜹 = 	 01

Move：𝜹 = 	
0
1
2

Reuse theorem:
Denote 𝜹 a move for iteration vector 𝒊 of a loop nest. Given two

different offsets 𝒄𝒋 and 𝒄𝒌, 𝒄𝒋 ≠ 𝒄𝒌 in an access pattern sharing the same
coefficient matrix A, if 𝒄𝒋 − 𝒄𝒌 = 𝜆𝐴𝜹 where λ is a non-negative integer,
then the data element referenced by 𝒄𝒋 can be reused as the data
referenced by 𝒄𝒌 after λ iterations.

Constructing data reuse chains

𝑃𝐴 =
(0, 0)T (0, 1)T (0, 2)T

(1, 0)T (1, 2)T

(2, 0)T (2, 1)T (2, 2)T

(0, 0)T ← (0, 1)T ← (0, 2)T

(1, 0)T ← ← (1, 2)T

(2, 0)T ← (2, 1)T ← 		(2, 2)T

The new pattern which will be delivered
to the memory partitioning algorithm

𝜹 = 	 01𝐴 = 	 1 0
0 1

𝜆 = 1 𝜆 = 1

Bank Mapping

By	assumptions	3	and	4,	the	corollary	holds:

𝐵 𝒙 = 𝜶 7 𝒙 %𝑁Design choice:
Partition vector Partition factor

Padding method

Storage overhead:

(this picture is selected from [1])

[1] Y. Wang, P. Li, and J. Cong, “Theory and algorithm for generalized memory partitioning in high-level synthesis,”
in Proceedings of the 2014 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA), 2014.

Revised padding method

The	case	where	some	component	of	the	partition	vector	
𝜶 are	zero.

Revised padding method

i0

i1

i2

i0

i10 1 2 3 4

0

1

2

A	3-dimensional	access	pattern.

The	partition	vector	𝜶would	be	(1,	3,	0)T.	

Partition	factor		𝑁 would	be	9.

Revised padding method

Storage overhead:

If k = 1, no padding is needed, which, by our memory partitioning scheme,
is a common case!

n Re-arrange	𝜶 = 𝛼0, 𝛼1, … , 𝛼GHI ,	such	that	𝛼0, 𝛼1, … , 𝛼JHI ≠
0,	𝛼𝑘,𝛼𝑘 + 1, … , 𝛼GHI = 0.	

n Re-arrange	𝒙 = 𝑥0, 𝑥1,… , 𝑥GHI correspondingly.
n Apply	padding	to	the	k-1	dimension.

Benchmarks

(a).BICUBIC (b).DENOISE (c).MOTION_LH (d).DECONV

(e).PREWITT (f).SOBEL (g).LOG (h).CANNY

Experimental result & comparison

Experimental result & comparison

Bank # LUTs # FFs # DSPs Clock

Average
improvement 59.8% 78.6% 66.8% 41.7% 14.0%

Experimental result & comparison

Conclusion

Contributions:
n Propose	to	cache	the	reusable	data	by	on-chip	registers	of	

FPGA
n Propose	a	new	data	reuse	strategy	
n Revise	the	padding	method to	generate	intra-bank	offset	

more	efficiently.

Results:
Compared	with	the	GMP	partition	scheme,		
n ours	can	reduce	the	required	number	of	banks	by 59.8%	on	

average.
n The	number	of	LUTs	is	reduced	by	78.6%, Flip-Flops	by 66.8%,

DSP48Es	by 41.7%	on	average.
n While	the	performance	is	improved	slightly.

