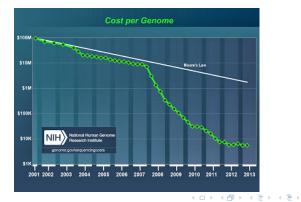
Ramethy: Reconfigurable Acceleration of Bisulfite Sequence Alignment

James Arram, Wayne Luk (Imperial College) Peiyong Jiang (Chinese University of Hong Kong)


February 24, 2015

Contributions

- A run-time reconfigurable architecture for accelerating sequence alignment using FPGAs
- An application of this architecture to accelerate bisulfite sequence alignment
- Optimisations which improve the performance of the FM-index search operation
- Implementation of our design: Ramethy on a Maxeler node
 - ▶ 14.9x speed of multicore CPU (up to 88.4x)
 - 3.8x speed of GPU (up to 22x)

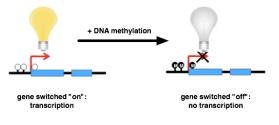
Motivation

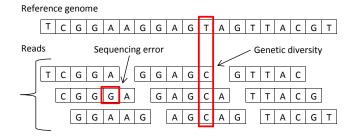
- Cost of DNA sequencing decreasing faster than Moore's Law
 - Amount of sequenced data increasing
 - Current compute infrastructures struggling
 - Slow analysis = slow diagnosis

э

Bisulfite Sequencing

- Particular DNA sequencing used to find methylation status of DNA
 - Mechanism which controls gene expression
- Studies link Methylation to certain illnesses




Figure: Image by Karina Zillner

Bisulfite Sequencing Applications

- Exciting diagnosis methods developed by CUHK:
- 1. Cancer diagnosis
 - General diagnosis: targets most cancers
 - Early stage detection
- 2. Prenatal diagnosis
 - Test baby for illness before birth
 - non-invasive: safe for mother and baby

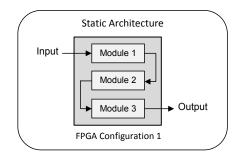
Bisulfite Sequencing Analysis

- Latest bisulfite sequencing analysis tool: Methy-Pipe (developed by CUHK)
 - Fully integrated, but still slow (\sim 1 day to perform analysis)
 - Sequence alignment is bottleneck (over 50% of run-time)

Alignment Programs

- Multiple software programs for sequence alignment
 - Soap2, BWA, Bowtie, etc.
- Several GPU-based alignment programs
 - Soap3-dp, CUSHAW
 - up to 10x faster than CPU-based alignment programs
- FPGA based alignment programs have been proposed
 - Typically accelerate Smith-Waterman alignment algorithm
 - Good speed-up, but often compromise functionality and accuracy

FM-index

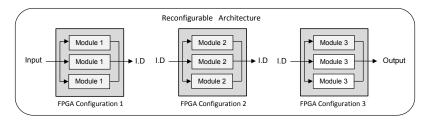

- Given Methy-Pipe alignment parameters, we target FM-index search operation for acceleration
 - Performs alignment using an index of the reference genome
 - Closely related to suffix arrays (SA)
- FM-index search operation:
 - Update SA interval for each symbol in read (backwards search)
 - number updates (iterations) = number symbols in read
- 1: initialise SA interval
- 2: for each symbol in read (last to first) do
- 3: update SA interval
- 4: end for

FM-index Search Operation Analysis

- Extend search with backtracking for inexact alignment
 - Edit operations (sub, ins, del) performed on the read
- Algorithm bottlenecks:
 - Dynamic data access to index (2 per update)
 - Excessive backtracking in inexact alignment
- Optimise algorithm and alignment architecture

Static Architecture

FPGA is configured with a static alignment circuit


- Performance limited by features of alignment algorithms:
 - 1. Idle Modules
 - 2. Unbalanced pipelines

- 3. Not enough resources
- 4. Inflexible alignment

Run-time Reconfigurable Architecture

FPGA configurations for each module

- Modules replicated as many times as possible
- Run-time reconfiguration used to switch configurations

I.D = intermediate data

Run-time Reconfigurable Architecture Analysis

Performance of run-time reconfigurable architecture:

$$T = \sum_{i} \left(T_i / N_i + t_r + t_t \right)$$

- T_i: time for module to process input data
- N_i: number of modules in configuration
- Overheads: t_r (reconfiguration time), t_t (transfer time)
- Performance of static architecture

best:
$$T = \max(T_1/N_1, ...)$$
 worst: $T = \sum_i (T_i/N_i)$
 $\triangleright N_{i:runtime} >> N_{i:static}$

Run-time Reconfigurable Architecture Analysis

- Reconfiguration addresses limitations of static architecture:
- 1. Configurations contain single type of module, data partitioned:
 - No idle modules
- 2. Modules are not interlinked:
 - No unbalanced pipeline of modules
- 3. Configurations for each stage in alignment algorithm:
 - Easier to map full alignment circuit to hardware
- 4. Run-time reconfiguration used to switch configurations:
 - Flexible alignment

FM-index Optimisations

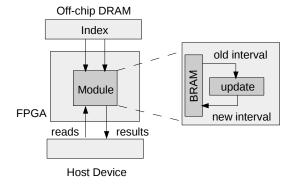
Reduce dynamic data access: n-step FM-index

- Old: SA interval updated for 1 symbol per iteration
- New: SA interval updated for n symbols per iteration
- Number of dynamic data accesses reduced by factor of n
- Reduce excessive backtracking: bi-directional search
 - Old: brute force search
 - New: Use bi-directional search and constrain edit position
 - Reduce search space and excessive backtracking
- More details in paper

Ramethy: Implementation

Design goal: Match alignment parameters of Methy-Pipe

- Permit up to two mismatches in reads
- Report unique alignments only



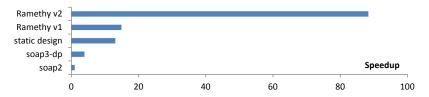
Implement Ramethy on a 1U Maxeler MPC-X1000 node

- 8 Altera Stratix V FPGAs each with 48GB of off-chip DRAM
- Design as data flow graph, then compiled into bitstream

Module Designs

- Host CPU streams reads to modules, results streamed back
- Index stored in off-chip DRAM
- Module uses BRAM to store reads and SA intervals

Experimentation

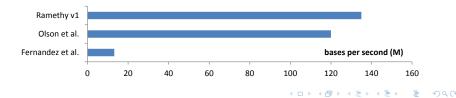

- Experimental data:
 - Reference genome = chr22 of Human genome (Full 3.3GB)
 - 10M reads of 75 symbols
- Comparisons with: soap2 (CPU - 2 Intel Xeon: 32 cores) soap3-dp (GPU - 1 NVIDIA GTX 580, 512 cores)
 - Among fastest alignment programs available
 - soap2 used in Methy-Pipe, later versions may use soap3-dp
- Provide 3 performance values for Ramethy (8 FPGAs):
 - v1: measured values (1 module per Conf.)
 - v2: upper bound estimate (3 modules per Conf.)
 - static: best case static design 4 EM, 1 OM, 3 TM (1 module per Conf.)

Performance: Bisulfite Sequence Alignment

program	platform	clock freq.	device	Mbps	speedup
soap2	Intel E5-2650	2000	2	4.5	1.0x
soap3-dp	NVIDIA GTX-580	772	1	17.4	3.9x
static design	MPC-X1000	150	8	58.5	13.1x
Ramethy v1	MPC-X1000	150	8	66.4	14.9×
Ramethy v2	MPC-X1000	150	8	395	88.4x

14.9x speed of soap2, 3.8x speed of soap3-dp

Same accuracy as software



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Performance: Standard DNA Sequence Alignment

program	platform	clock freq.	device	Mbps
Fernandez et al.	Convey HC-1	150	4	13.2
Olson et al.	Pico M-503	250	8	120
Ramethy v1	MPC-X1000	150	8	135

- Fernandez et al.: Does not test all edit positions
- Olson et al.: Backtracing?
- Ramethy: Identical to software

Energy Consumption

 Measure energy consumption from run-time device power (obtained from MaxOS)

Program	Device Power (W)	Energy Consumption (kJ)
soap2	190	31.9
soap3-dp	244	10.5
Ramethy v1	72	1.5

 Almost an order of magnitude less energy consumed by FPGAs (short run-time plus low power)

Future Work

- Further optimising Ramethy
 - Other ways of reducing dynamic data access?
 - Pre-filer reads for quick discarding
- Accelerating other parts of Methy-Pipe
- Study scientific and clinical impact

Conclusion

- Accelerate bisulfite sequence alignment using FPGAs
- Run-time reconfigurable architecture for accelerating alignment algorithms
- Target FM-index for acceleration
 - Reduce dynamic data access and excessive backtracking
- Ramethy 14.9x speed of soap2, 3.8x speed of soap3-dp
 - Identical alignment accuracy to software
 - Almost an order of magnitude less energy consumed
- Faster alignment = improved science and healthcare