
Energy and Memory Efficient Mapping of

Bitonic Sorting on FPGA

Ren Chen, Sruja Siriyal, Viktor K. Prasanna

Ming Hsieh Department of Electrical Engineering

University of Southern California

Ganges.usc.edu/wiki/TAPAS

 Introduction

 Background and Related Work

 Memory and Energy Efficient Mapping

 Architecture Implementation

 Experimental Results

 Conclusion and Future Work

Outline

2

3

Applications of Sorting Algorithm

Online social networks

Citation networks

Protein interactions

Air traffic network

WWW

Neural network

 Parallel sorting network with simple control scheme

 Hardware implementation can achieve extremely high throughput

 Computation complexity: 𝑂 𝑁 log 2𝑁 for problem size 𝑁

4

Bitonic Sorting Network (BSN) (1)

Max(top half) < Min(bottom half)

N

Bitonic

Bitonic

Bitonic

N/2

N/2

Top half

Bottom half

M
o

n
o

to
n

ic

S
p

li
t

B
it

o
n

ic

x0

x7

Bitonic merge network (N = 8)

Recursively

split

N

Bitonic sorting network

Recursively

merge

… …
B

M
(4

)
B

M
(4

)

B
M

(N
)

…

logN stages

 Comparison stages: log 𝑁 log 𝑁 + 1 /2

 Communication stages: log 𝑁 log 𝑁 + 1 /2

 Inter-stage communication → data permutation between comparison stages

 Two types of permutation patterns: stride permutation 𝑃𝑚,𝑡, 𝑄𝑚 = 𝐼2⨂𝑃𝑚/2,𝑚/4

 2 log 𝑁 unique permutation patterns

5

BSN (2)

P4,2

P4,2

P4,2

P4,2 P8,4 P8,2

Input Output

P4,2

P4,2

P4,2

P4,2

Q8

8-input bitonic sorting network

 Resource consumption: 𝑂(𝑁 log 2𝑁) compare-and-swap (CAS) units

 Total “wire length”: Ω(𝑁2)

 “Wire length”: data communication distance, communication power ∝ “wire length”

 Key issue: communication power consumption between adjacent stages

6

𝜶𝑵 𝟐 + 𝟐 + 𝟒 + ⋯ + 𝟐 + 𝟒 … +
𝑵

𝟐

= 𝛀(𝑵𝟐)

Total “wire length”:

Experimental results on Virtex-7 FPGA

BSN (3)

Classic result:
Layout opt. does not help

N

Bitonic sorting network

… …
B

M
(4

)
B

M
(4

)

B
M

(N
)

…

0

500

1000

1500

2000

2500

3000

16 256 4096 16384P
o

w
e

r
c

o
n

s
u

m
p

ti
o

n
 (

m
W

)
Problem size N

Communication power Computation power

Sort streaming data with a fixed data parallelism

 Data memory: stores the input consisting of 𝑁-key data sequences

 Input/output: in a streaming manner and at a fixed rate

 Data parallelism 𝑝: # of keys processed each cycle per comparison stage

 Inter-stage communication: data permutation between adjacent stages

7

Problem Definition (1)

External

memory

FPGA

…

S
tr

e
a

m
 i

n
p

u
t

S
tr

e
a

m
 o

u
tp

u
t

p

C
A

S
 u

n
it

s

… …

In
te

r-
s

ta
g

e
 c

o
m

m
u

n
ic

a
ti

o
n

… … C
A

S
 u

n
it

s

C
A

S
 u

n
it

s

…

 Performance metrics

 Throughput

 Defined as the number of bits sorted per second (Gbits/s)

 Product of number of keys sorted per second and data width per key

 Energy efficiency

 Defined as the number of bits sorted per unit energy consumption (Gbits/Joule)

 Calculated as the throughput divided by the average power consumption

 Memory efficiency

 Throughput achieved divided by the amount of on-chip memory used by the

 design (in bits)

8

Problem Definition (2)

 Introduction

 Background and Related Work

 Memory and Energy Efficient Mapping

 Architecture Implementation

 Experimental Results

 Conclusion and Future Work

Outline

9

10

Related Work (FPGA ’11, D. Koch and J. Torresen)

 Tree merge sorter

 FIFO-based merge sorter

 Insertion sorter

 FIFO & Tree

 2 GB/s using on-chip memory

Tree merge sorter

FIFO-based merge sorter Insertion sorter

11

Related Work (DAC ’12, M. Zuluaga and M. Püschel)

 Hardware generator for sorting

 Domain-specific language based

12

Related Work (FPGA ’14, J. Casper and K. Olukotun)

13

Memory and Energy Efficient Mapping

 Drawbacks of the state-of-the-art

 High throughput not guaranteed

 Design scalability needs to be improved

 No analysis provided

 Data parallelism is limited

 We propose a mapping approach to obtain a streaming sorting

architecture

 BSN based

 Utilizes Clos network for inter-stage communication

 Highly optimized wrt. energy efficiency

 Achieves optimal memory efficiency (𝑂（𝑝/𝑁）)

 Scalable with 𝑁 and 𝑝

 Supports processing continuous data streams

 Introduction

 Background and Related Work

 Memory and Energy Efficient Mapping

 Architecture Implementation

 Experimental Results

 Conclusion and Future Work

Outline

15

 Fold the BSN for a fixed data parallelism 𝑝

 Fold the Clos network to perform inter-stage communication

 Support continuous data streams to maximize throughput

16

External

memory
…

S
tr

e
a

m
 i

n
p

u
t

S
tr

e
a

m
 o

u
tp

u
t

p
… … … … …

CAS unit Inter-stage communication

Streaming architecture for sorting

Proposed Mapping Approach

Folding

the BSN
Fixed data

parallelism 𝑝

 Fold the BSN → Streaming permutation

17

Mapping the Clos Network (1)

Data stream Data stream

p
 i
n
p

u
ts

/o
u

tp
u

ts
 p

e
r

c
lo

c
k
 c

y
c
le

S
tr

e
a

m
in

g

p
e

rm
u
ta

ti
o
n

x12 x0x4x8

x13 x9 x5 x1

x14 x10 x6 x2

x15 x11 x7 x3

x3 x0x1x2

x7 x6 x5 x4

x11 x10 x9 x8

x15 x14 x13 x12

 Fold the Clos network into a 3-stage Streaming Permutation Network (SPN)

 SPN

 Stage 0

 𝑆1-to-𝑆1 connection

 Stage 1

 𝑆1 single-port

 memory blocks,

 each of size 𝑆2

 Stage 2

 𝑆1-to-𝑆1 connection

 Permutation in time

 Permuting temporal

 order of data elements

18

Mapping the Clos Network (2)

…

… …

…
…

Crossbar boxes Crossbar boxes Crossbar boxes

…
…

… … ……

In
p

u
t

s
tr

e
a

m

O
u

tp
u

t
s

tr
e

a
m

S2 S1 S2

S2 x S2S1 x S1 Crossbar

SPN, p = S1

...

...

…

Clos Network, N = S1 x S2

Crossbar ... Memory block

Stage 0 Stage 1

(Permutation in time)
Stage 2

19

Mapping the Clos Network (3)

Theorem 1: With 𝑝 = 𝑆1, the proposed SPN can realize any given

permutation on streaming input of an 𝑁-key data sequence without any

memory conflicts using 𝑆1 single-port memory blocks, each of size 𝑆2

(𝑆2 ≥ 𝑆1).

Memory conflict: occurs if concurrent read or write access to more than
one word in a single-port memory block is performed in a clock cycle.

Theorem 2: For any given permutation, time to “route” SPN is 𝑂(𝑁 log 𝑝)

(1 ≤ 𝑝 ≤ 𝑁)

 “Routing” for SPN

 Obtain control bits for stage 0 and

 stage 2

 Obtain memory addresses for stage 1

 Configured dynamically or statically

 “Routing” for 𝑁 = 4096, 𝑝 = 64

 Time in state-of-the-art 1: 6 minutes

 Time for the proposed SPN: 16 s

 22x improvement

20

Mapping the Clos Network (4)

Stage 0
(SPN)

Stage 2
(SPN)

Stage 1
(SPN)

[1] P. A. Milder, J. C. Hoe., M. Puschel. "Automatic generation of streaming datapaths for arbitrary fixed permutations." IEEE DATE, pp. 1118-1123.,

2009.

No need

to route

stage 1

 Key advantages of utilizing Clos network:

 Result in efficient control logic for SPN

 𝑂(log
𝑁

𝑝
) control logic

 Run-time “programmability”

 Time multiplexing CAS units to save logic

 Low “programming” overhead

 Scalable wrt. 𝑁 and 𝑝

 𝑂(𝑝 log 𝑝) logic consumption for stage 0 and stage 2

 𝑝 single-port memory blocks

21

Mapping the Clos Network (5)

 Memory power for permutation in time (stage 1 in SPN) is significant,

especially when permuting continuous data streams

 Dual-port memory:

 One read port and one write port, independently using different memory

addresses

 E.g. 36kb BRAM on Xilinx Virtex-7 in the simple dual-port mode

 “Single-port” memory

 One port supports read-before-write operation to the same memory location

in one cycle

 Use a single memory address port

 E.g. 18kb BRAM on Xilinx Virtex-7 in the single-port mode

22

Memory Efficient Permutation in Time (1)

 Permutation in time on continuous data streams can be performed using

dual-port memory (state-of-the-art):

 Store data using 2𝑆2 memory for permuting 𝑆2-key data sequences

 Store addresses using 𝑂(𝑆2) memory: 0,3,2,1 are stored in the example below

23

Memory Efficient Permutation in Time (2)

x00 x01 x02 x03

x10 x11 x12 x23

Time

x00 x03 x02 x01

…

xi0 xi1 xi2 xi3

x(i-1)(0,3,2,1)

Permutation in time using dual-port memory

…

…

…

x(i-1)(0,1,2,3)

x(i-2)(0,3,2,1)

 We develop an in-place algorithm for permutation in time on continuous

data streams:

 Store data in single-port memory with size of 𝑆2

 Update memory addresses by an address generation unit using 𝑂(log 𝑆2) logic

24

Memory Efficient Permutation in Time (3)

x00 x01 x02 x03 x10 x11 x12 x23

x00 x03 x02 x01

…

xi0 xi1 xi2 xi3

x(i-1)(0,3,2,1)

x(i+1)(0,1,2,3)

xi0 xi3 xi2 xi1

Permutation in time using single-port memory

Time

…

25

Memory Efficient Permutation in Time (4)

x00 x01 x02 x03 x10 x11 x12 x23

x00 x03 x02 x01

…

xi0 xi1 xi2 xi3

x(i-1)(0,3,2,1)

x(i+1)(0,1,2,3)

xi0 xi3 xi2 xi1

Permutation in time using single-port memory

Time

…

Theorem 3: Any permutation in time on continuous data

streams consisting of 𝑆2-element sequences can be realized

using a single-port memory of size 𝑆2

 Active memory address ports reduced by 50%

 Memory size reduced by 50%

 Implementation of in-place algorithm

 Use matrix 𝑃 to represent the permutation in time

 Given address sequence 𝐴0 = 0,1,2, … , 𝑆2 − 1 𝑇

 Assume 𝐴𝑖−1 is used for 𝑖th permutation in time,

 thus 𝐴𝑖 = 𝑃𝐴𝑖−1

 During 𝑖th permutation, in cycle 𝑗, 𝐴𝑖[𝑘] is the

 memory address

 Based on 2, there always exists a constant 𝑞, such that
𝑃𝑞+1 = 𝐼,

 thus 𝑃𝐴𝑞 = 𝑃2𝐴𝑞−1 = ⋯ = 𝑃𝑞+1𝐴0 = 𝐴0

 For stride permutation, 𝑞 = log 𝑆2

26

Memory Efficient Permutation in Time (5)

Memory

block

Data

 read
Data

write

ROM

Seq. Logic

𝐴𝑖[0]

𝐴𝑖[𝑘]

Address generation unit

Theorem 4: For any given permutation in time, the proposed in-place algorithm

requires a constant number of address sequences.

[2] R. A. Brualdi. Combinatorial matrix classes, volume 13. Cambridge University Press, 2006.

• Introduction

• Background and Related Work

• Memory and Energy Efficient Mapping

• Architecture Implementation

• Experimental Results

• Conclusion and Future Work

Outline

27

28

Architecture Implementation (1)

High Throughput Design

…

Control Unit

Stage 1 Stage 2 Stage (log N)(log N+1)/2

p

CAS Units SPN

 High Throughput (HT) Design

 Supports sorting continuous data streams

 Overall latency： 6𝑁/𝑝 + 𝑜(𝑁/𝑝) (1 ≤ 𝑝 ≤ 𝑁/ log 2𝑁)

 Fully pipelined and can maximize the I/O bandwidth utilization

29

Architecture Implementation (2)

Resource Efficient Design

CAS Units

…

S1 to S1 connection

S1 to S1 connection

M
e

m
o

ry

B
lo

c
k

Control

Unit …

…

SPN

p· log (N/p)

p· log p

p· log p

p/2

 Resource Efficient Design

 Trade off throughput for area for large scale sorting

 Use “programmable” SPN to time multiplex 𝑝/2 CAS units

 “Program” the SPN to perform 2log 𝑁 unique permutation patterns

30

Architecture Implementation (3)

Design Latency Logic Memory
Memory

type

Through-

put

Memory/

throughput

FPGA ‘14 𝑜(𝑁 log 𝑝 /𝑝) 𝑜(𝑝 log 𝑁) 𝑜(𝑁) n/a 𝑜(𝑝/ log 𝑝) 2𝑁 + 𝑜(𝑁)

DAC ‘12
6𝑁

𝑝
+ 𝑜(𝑁/𝑝) 𝑜(𝑝 log2𝑁) 12𝑁 + 𝑜(𝑁) Dual-port 𝑜(𝑝)

12𝑁

𝑝
+ 𝑜(𝑁/𝑝)

FPGA ‘11 𝑜(𝑁) 𝑜(log 𝑁) 2𝑁 + 𝑜(𝑁) Dual-port 𝑜(1) 2𝑁 + 𝑜(𝑁)

TC ‘00 𝑜(
𝑁 log 𝑁

𝑝 log 𝑝
) 𝑜(𝑝 log2𝑝) 𝑜(𝑁) Dual-port 𝑜(

𝑝 log 𝑝

log 𝑁
) 𝑜(

𝑁 log 𝑁

𝑝 log 𝑝
)

HT

Design

𝟔𝑵

𝒑
+ 𝒐(𝑵/𝒑) 𝑜(𝑝 log2𝑁) 6𝑁 + 𝑜(𝑁) Single-port 𝑜(𝑝)

𝟔𝑵

𝒑
+ 𝒐(𝑵/𝒑)

Resource

Efficient

Design

𝑜(𝑁 log2 𝑁 /𝑝) 𝑜(𝑝) 𝑜(𝑁) Dual-port 𝑜(
𝑝

log2 𝑝
) 𝑜(𝑁 log2 𝑁 /𝑝)

• Introduction

• Background and Related Work

• Memory and Energy Efficient Mapping

• Architecture Implementation

• Experimental Results

• Conclusion and Future Work

Outline

31

 Platform and tools

 Xilinx Virtex-7 XC7VX980T , speed grade -2L

 Xilinx Vivado 2014.2 and Vivado Power Analyzer

 Input vectors for simulation

 Randomly generated with an average toggle rate of 50% (pessimistic estimation)

 Performance metrics

 Throughput

 Energy efficiency

 Memory efficiency

32

Experimental Setup

 Resource consumption of the proposed SPN

 Baseline: HT Design implemented without applying in-place permutation

 Amount of LUT-L: mainly determined by data parallelism

 Amount of BRAM18: reduced by 50% through in-place permutation in time

 Scalable wrt. problem size and data parallelism

33

Experimental Results (1)

 Performance of the proposed designs for sorting
 Utilizations of BRAM, LUT-L, LUT-M are reduced significantly

 33%~67% energy efficiency improvement compared with the baseline

34

Experimental Results (2)

 Memory efficiency comparison

 [16] (FPGA ’11): 43K-key or 21.5K-key data sequences

 [20] (VLDB ’12): for sorting data sets consisting of 8-key data sequences

 [28] (DAC ’12): 16K-key streaming data

 sequences

 Our designs achieve

 2.3x~5.3x better memory efficiency than [16]

 1.5x~2.6x better memory efficiency than [28]

 All our design points are dominating

35

Experimental Results (3)

Memory efficiency comparison of various design

 Energy efficiency comparison

 Data parallelism: 4

 All pipelined to achieve 250 MHz

 Achieves the same throughput

 Problem size: 16~16384

 [28]: a hardware generator for

 streaming sort

 Up to 60% energy efficiency

 improvement

36

Experimental Results (4)

Energy efficiency comparison of various

designs

Conclusion and Future Work

37 37

 Conclusion

 Streaming sorting architecture

 Scalable with data parallelism and problem size

 Efficient inter-stage communication realization

 “Programmable” streaming permutation network

 Optimal memory efficiency

 Demonstrates trade offs between throughput, area and latency

 Future work

 Design framework for automatic application-specific energy

efficiency optimizations on FPGA

40 40

Thanks!

Questions?

Ganges.usc.edu/wiki/TAPAS

