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Applications of Sorting Algorithm 

Online social networks 

Citation networks 

Protein interactions 

Air traffic network 

WWW 

Neural network 



 Parallel sorting network with simple control scheme 

 Hardware implementation can achieve extremely high throughput 

 Computation complexity: 𝑂 𝑁 log 2𝑁  for problem size 𝑁 
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Bitonic Sorting Network (BSN) (1) 
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 Comparison stages: log 𝑁 log 𝑁 + 1 /2 

 Communication stages: log 𝑁 log 𝑁 + 1 /2 

 Inter-stage communication → data permutation between comparison stages 

 Two types of permutation patterns: stride permutation 𝑃𝑚,𝑡, 𝑄𝑚 = 𝐼2⨂𝑃𝑚/2,𝑚/4  

 2 log 𝑁 unique permutation patterns 
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BSN (2) 

P4,2

P4,2

P4,2

P4,2 P8,4 P8,2

Input Output

P4,2

P4,2

P4,2

P4,2

Q8

8-input bitonic sorting network 



 Resource consumption: 𝑂(𝑁 log 2𝑁) compare-and-swap (CAS) units 

 Total “wire length”: Ω(𝑁2) 

 “Wire length”: data communication distance, communication power ∝ “wire length” 

 Key issue: communication power consumption between adjacent stages 
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Total “wire length”: 

Experimental results on Virtex-7 FPGA 

BSN (3) 

Classic result: 
Layout opt. does not help 
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Sort streaming data with a fixed data parallelism 

 Data memory: stores the input consisting of 𝑁-key data sequences 

 Input/output: in a streaming manner and at a fixed rate 

 Data parallelism 𝑝: # of keys processed each cycle per comparison stage 

 Inter-stage communication: data permutation between adjacent stages 
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Problem Definition (1) 
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 Performance metrics 

 Throughput 

 Defined as the number of bits sorted per second (Gbits/s) 

 Product of number of keys sorted per second and data width per key 

 Energy efficiency 

 Defined as the number of bits sorted per unit energy consumption (Gbits/Joule) 

 Calculated as the throughput divided by the average power consumption 

 Memory efficiency 

 Throughput achieved divided by the amount of on-chip memory used by the 

     design (in bits) 
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Problem Definition (2) 
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Related Work (FPGA ’11, D. Koch and J. Torresen) 

 Tree merge sorter 

 FIFO-based merge sorter 

 Insertion sorter 

 FIFO & Tree 

 2 GB/s  using on-chip memory 

 

      

 
 

 

 

 

Tree merge sorter 

FIFO-based merge sorter Insertion sorter 
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Related Work (DAC ’12, M. Zuluaga and M. Püschel) 

 Hardware generator for sorting 

 Domain-specific language based 
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Related Work (FPGA ’14, J. Casper and K. Olukotun) 
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Memory and Energy Efficient Mapping 

 Drawbacks of the state-of-the-art 

 High throughput not guaranteed 

 Design scalability needs to be improved 

 No analysis provided 

 Data parallelism is limited 

 We propose a mapping approach to obtain a streaming sorting 

architecture 

 BSN based 

 Utilizes Clos network for inter-stage communication 

 Highly optimized wrt. energy efficiency 

 Achieves optimal memory efficiency (𝑂（𝑝/𝑁）) 

 Scalable with 𝑁 and 𝑝 

 Supports processing continuous data streams 
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 Fold the BSN for a fixed data parallelism 𝑝 

 Fold the Clos network to perform inter-stage communication 

 Support continuous data streams to maximize throughput 
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 Fold the BSN → Streaming permutation 
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Mapping the Clos Network (1) 
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 Fold the Clos network into a 3-stage Streaming Permutation Network (SPN) 

 SPN 

 Stage 0 

 𝑆1-to-𝑆1 connection 

 Stage 1 

 𝑆1 single-port  

     memory blocks, 

     each of size 𝑆2 

 Stage 2 

 𝑆1-to-𝑆1 connection 

 Permutation in time 

 Permuting temporal  

      order of data elements  
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Mapping the Clos Network (2) 
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Mapping the Clos Network (3) 

Theorem 1: With 𝑝 = 𝑆1, the proposed SPN can realize any given 

permutation on streaming input of an 𝑁-key data sequence without any 

memory conflicts using 𝑆1 single-port memory blocks, each of size 𝑆2 

(𝑆2 ≥ 𝑆1). 

Memory conflict: occurs if concurrent read or write access to more than 
one word in a single-port memory block is performed in a clock cycle. 



Theorem 2: For any given permutation, time to “route” SPN  is 𝑂(𝑁 log 𝑝) 

(1 ≤ 𝑝 ≤ 𝑁) 

 “Routing” for SPN 

 Obtain control bits for stage 0 and 

      stage 2 

 Obtain memory addresses for stage 1 

 Configured dynamically or statically 

 “Routing” for 𝑁 = 4096, 𝑝 = 64 

 Time in state-of-the-art 1: 6 minutes 

 Time for the proposed SPN: 16 s 

 22x improvement 
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Mapping the Clos Network (4) 

Stage 0 
(SPN) 

Stage 2 
(SPN) 

Stage 1 
(SPN) 

[1] P. A. Milder, J. C. Hoe., M. Puschel. "Automatic generation of streaming datapaths for arbitrary fixed permutations."  IEEE DATE, pp. 1118-1123., 

2009. 

 

No need  

to route 

stage 1 



 Key advantages of utilizing Clos network: 

 Result in efficient control logic for SPN 

 𝑂(log
𝑁

𝑝
) control logic 

 Run-time “programmability”  

 Time multiplexing CAS units to save logic 

 Low “programming” overhead 

 Scalable wrt. 𝑁 and 𝑝 

 𝑂(𝑝 log 𝑝) logic consumption for stage 0 and stage 2 

 𝑝 single-port memory blocks 
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Mapping the Clos Network (5) 



 Memory power for permutation in time (stage 1 in SPN) is significant, 

especially when permuting continuous data streams 

 

 Dual-port memory:  

 One read port and one write port, independently using different memory 

addresses 

 E.g. 36kb BRAM on Xilinx Virtex-7 in the simple dual-port mode 

 

 “Single-port” memory 

 One port supports read-before-write operation to the same memory location 

in one cycle 

 Use a single memory address port 

 E.g. 18kb BRAM on Xilinx Virtex-7 in the single-port mode 
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Memory Efficient Permutation in Time (1) 



 Permutation in time on continuous data streams can be performed using 

dual-port memory (state-of-the-art):  

 Store data using 2𝑆2 memory for permuting 𝑆2-key data sequences  

 Store addresses using 𝑂(𝑆2) memory: 0,3,2,1 are stored in the example below 
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Memory Efficient Permutation in Time (2) 
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 We develop an in-place algorithm for permutation in time on continuous 

data streams:  

 Store data in single-port memory with size of 𝑆2 

 Update memory addresses by an address generation unit using 𝑂(log 𝑆2) logic 
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Memory Efficient Permutation in Time (3) 
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Memory Efficient Permutation in Time (4) 
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…

Theorem 3: Any permutation in time on continuous data 

streams consisting of 𝑆2-element sequences can be realized 

using a single-port memory of size 𝑆2 

 Active memory address ports reduced by 50% 

 Memory size reduced by 50% 



 Implementation of in-place algorithm 

 Use matrix 𝑃 to represent the permutation in time 

 Given address sequence 𝐴0 = 0,1,2, … , 𝑆2 − 1 𝑇 

 Assume 𝐴𝑖−1 is used for 𝑖th permutation in time,  

    thus  𝐴𝑖 = 𝑃𝐴𝑖−1 

 During 𝑖th permutation, in cycle 𝑗, 𝐴𝑖[𝑘] is the  

    memory address 

 Based on 2, there always exists a constant 𝑞,  such that   
𝑃𝑞+1 = 𝐼, 

            thus 𝑃𝐴𝑞 = 𝑃2𝐴𝑞−1 = ⋯ = 𝑃𝑞+1𝐴0 = 𝐴0  

 For stride permutation, 𝑞 = log 𝑆2 
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Memory Efficient Permutation in Time (5) 

Memory 

block 

Data 

 read 
Data  

write 

ROM 

Seq. Logic 

𝐴𝑖[0] 

𝐴𝑖[𝑘] 

Address generation unit 

Theorem 4: For any given permutation in time, the proposed in-place algorithm 

requires a constant number of address sequences. 

[2] R. A. Brualdi. Combinatorial matrix classes, volume 13. Cambridge University Press, 2006. 
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Architecture Implementation (1) 

High Throughput Design 

…

Control Unit

Stage 1 Stage 2 Stage (log N)(log N+1)/2

p

CAS Units SPN

 High Throughput (HT) Design 

 Supports sorting continuous data streams 

 Overall latency： 6𝑁/𝑝 + 𝑜(𝑁/𝑝) (1 ≤ 𝑝 ≤ 𝑁/ log 2𝑁) 

 Fully pipelined and can maximize the I/O bandwidth utilization  
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Architecture Implementation (2) 

Resource Efficient Design 
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 Resource Efficient Design 

 Trade off throughput for area for large scale sorting 

 Use “programmable” SPN to time multiplex 𝑝/2 CAS units 

 “Program” the SPN to perform 2log 𝑁 unique permutation patterns 
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Architecture Implementation (3) 

Design Latency Logic Memory 
Memory 

type 

Through-

put 

Memory/ 

throughput 

FPGA ‘14 𝑜(𝑁 log 𝑝 /𝑝) 𝑜(𝑝 log 𝑁) 𝑜(𝑁) n/a 𝑜(𝑝/ log 𝑝) 2𝑁 + 𝑜(𝑁) 

DAC ‘12 
6𝑁

𝑝
+ 𝑜(𝑁/𝑝) 𝑜(𝑝 log2𝑁) 12𝑁 + 𝑜(𝑁) Dual-port 𝑜(𝑝) 

12𝑁

𝑝
+ 𝑜(𝑁/𝑝) 

FPGA ‘11 𝑜(𝑁) 𝑜(log 𝑁) 2𝑁 + 𝑜(𝑁) Dual-port 𝑜(1) 2𝑁 + 𝑜(𝑁) 

TC ‘00 𝑜(
𝑁 log 𝑁

𝑝 log 𝑝
) 𝑜(𝑝 log2𝑝) 𝑜(𝑁) Dual-port 𝑜(

𝑝 log 𝑝
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𝒑
+ 𝒐(𝑵/𝒑) 

Resource

Efficient 

Design 

𝑜(𝑁 log2 𝑁 /𝑝) 𝑜(𝑝) 𝑜(𝑁) Dual-port 𝑜(
𝑝

log2 𝑝
) 𝑜(𝑁 log2 𝑁 /𝑝) 
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 Platform and tools 

 Xilinx Virtex-7 XC7VX980T , speed grade -2L  

 Xilinx Vivado 2014.2 and Vivado Power Analyzer 

 Input vectors for simulation 

 Randomly generated with an average toggle rate of 50% (pessimistic estimation) 

 Performance metrics 

 Throughput 

 Energy efficiency 

 Memory efficiency 
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Experimental Setup 



 Resource consumption of the proposed SPN 

 Baseline: HT Design implemented without applying in-place permutation 

 Amount of LUT-L: mainly determined by data parallelism 

 Amount of BRAM18: reduced by 50% through in-place permutation in time 

 Scalable wrt. problem size and data parallelism 
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Experimental Results (1) 



 Performance of the proposed designs for sorting 
 Utilizations of BRAM, LUT-L, LUT-M are reduced significantly 

 33%~67% energy efficiency improvement compared with the baseline 
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Experimental Results (2) 



 Memory efficiency comparison 

 [16] (FPGA ’11): 43K-key or 21.5K-key data sequences 

 [20] (VLDB ’12): for sorting data sets consisting of 8-key data sequences 

 [28] (DAC ’12): 16K-key streaming data  

      sequences 

 Our designs achieve  

 2.3x~5.3x better memory efficiency than [16] 

 1.5x~2.6x better memory efficiency than [28] 

 All our design points are dominating  
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Experimental Results (3) 

Memory efficiency comparison of various design 



 Energy efficiency comparison 

 Data parallelism: 4 

 All pipelined to achieve 250 MHz 

 Achieves the same throughput 

 Problem size: 16~16384 

 [28]: a hardware generator for 

      streaming sort 

 Up to 60% energy efficiency 

     improvement  
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Experimental Results (4) 

Energy efficiency comparison of various 

designs 



Conclusion and Future Work 
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 Conclusion 

 Streaming sorting architecture 

 Scalable with data parallelism and problem size 

 Efficient inter-stage communication realization 

 “Programmable” streaming permutation network 

 Optimal memory efficiency 

 Demonstrates trade offs between throughput, area and latency 

 

 Future work 

 Design framework for automatic application-specific energy 

efficiency optimizations on FPGA 
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Thanks! 

 

Questions? 
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