
Technology Mapping into
General Programmable Cells

Alan Mishchenko Robert Brayton
Department of EECS, UC Berkeley

Wenyi Feng Jonathan Greene
Microsemi Corporation, SOC Products Group

2

Overview
l  Boolean matching is used in synthesis for FPGAs

l  To map into current programmable cells
l  To research future cell architectures

l  Boolean matching methods are often specialized,
slow, and require manual effort

l  We proposed a new Boolean matcher, which is
l  General (works for many types of cells)
l  Fast (due to the use of concurrency)
l  Automatic (does not require manual tuning)

l  Experiments show it is useful in practice

Boolean Matching

l Given a programmable cell and a Boolean
functions, find if a cell can be programmed
to implement a given function

a b c d e

f

Function that can be implemented:

F = AND(a, b, c, d, e, f)

Function that cannot be implemented:

F = XOR(a, b, c, d, e, f)

Programmable cell

Small Practical Functions

l  Classifications of Boolean functions
l  Random functions
l  Classes of specialized functions

l  Symmetric, unate, etc

l  Logic synthesis and technology mapping deal with
l  Functions appearing in the designs
l  Functions having small support (up to 16 variables)

l  We call them small practical functions (SPFs)
l  We concentrate on SPFs in this work

The Proposed Matching Flow

l Pre-computation
l Collect SPFs appearing in the design(s)
l  Input and pre-process cell description
l Perform Boolean matching concurrently for all

SPFs and save data into a file
l During mapping

l Perform additional Boolean matching step
l Allow only matchable functions to be used

Programmable Cells Used

Cell B o

i n m

g h

c

a b

d

e f
j

k l

Cell A

a b c

g j k h

m l i

n

d e f

LUT

LUT LUT

LUT

LUT LUT

LUT

Area Comparison
Design Area (number of instances)
 6-LUT 7-LUT 8-LUT 9-LUT Cell A Cell B
01 31246 28197 25734 24101 32408 25284
02 19808 19428 18998 18439 21694 18503
03 25528 23042 21314 20310 29071 20766
04 39366 36414 37315 35384 39548 33357
05 44426 41609 38232 36036 47810 36679
06 88964 83504 76317 72346 94669 72835
07 31048 27950 25042 24257 31769 24893
08 33154 29074 25268 26008 37626 26634
09 32684 32091 31485 31164 34709 31355
10 12909 12286 11688 11554 13165 11916
Geomean 1.000 0.929 0.870 0.841 1.065 0.852

0
0.2
0.4
0.6
0.8

1
1.2

6-LUT 7-LUT 8-LUT 9-LUT Cell A CellB

Delay and Runtime Comparison
Delay (logic depth in terms of instances) Runtime (seconds)

6-LUT 7-LUT 8-LUT 9-LUT Cell A Cell B 6-LUT 9-LUT Cell A Cell B
19 16 14 14 15 14 216 243 262 271

5 5 5 4 5 4 11 14 14 15
12 11 10 9 14 10 59 80 97 97

9 8 7 6 8 7 75 93 99 103
9 8 7 7 8 7 102 134 145 159
9 8 7 7 8 7 205 272 286 310
8 8 7 6 7 7 60 78 86 94

19 15 15 13 18 14 58 86 82 96
5 4 4 3 4 3 24 28 28 30
7 6 6 4 7 5 11 14 18 20

1.000 0.885 0.820 0.707 0.919 0.759 1.000 1.282 1.381 1.487

0

0.2

0.4

0.6

0.8

1

6-LUT 7-LUT 8-LUT 9-LUT Cell A CellB

0

0.5

1

1.5

6-LUT 9-LUT Cell A Cell B

Conclusions
l  Introduced Boolean matching problem
l  Described a mapping flow with matching
l  Experimented with two programmable cells and

reviewed the tradeoffs

l  Future work will focus on
l  Improving implementation
l Extending to standard cells
l Use in technology-independent synthesis

Abstract
l  Field-Programmable Gate Arrays (FPGA) implement logic functions using

programmable cells, such as K-input lookup-tables (K-LUTs). A K-LUT can
implement any Boolean function with K inputs and one output. Methods for
mapping into K-LUTs are extensively researched and widely used.
Recently, cells other than K LUTs have been explored, for example, those
composed of several LUTs, and combinations of LUTs and gates. Known
methods for mapping into these cells are specialized and complicated,
requiring a substantial effort to evaluate such custom cell architectures.
This paper presents a general approach to efficiently map into single-
output K-input cells containing LUTs, MUXes, and other elementary gates.
Cells with K up to 16 inputs can be handled. The mapper is fully automated
and takes a logic network and a symbolic description of a programmable
cell, and produces an optimized network composed of instances of the
given cell. Past work on delay/area optimization during mapping is
applicable and leads to good quality of results.

