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Motivating Example:
JPEG Encoding for 

CPU/Accelerator Platforms
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Roadmap

• Motivation & Introduction

• HW/SW Interfaces

• Accelerator Access Methods

• Case Study Results

• Summary & Conclusions

Problem Statement: How do we add OS support 

and reduce complexity when integrating 

accelerators with a general-purpose CPU?
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Introduction

• HybridOS Game Plan:

– What: Decouple HW design from SW design 

– How: Define interfaces; provide infrastructure

• Design Considerations:

– HW/SW interfaces

– Data movement

– Accelerator interconnections

– Security and protection

– Debugging
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Simple Coprocessor Model
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HybridOS Prototype Platform
Accelerator Framework

• Consistent SW Interfaces

• Protection boundaries

• Embedded memory/CPU caches
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Accelerator Access Methods

• HybridOS Access Methods:

Mechanism used to transfer data and control 

between application and accelerator(s)

• Consistent SW Interface, transparency

• Four methods evaluated

– User Space Buffers

– User Mapped DMA Buffers

– Uncacheable Direct Mapping

– Cacheable Direct Mapping
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Caching of Buffers

• Problem: Direct mapping reduces number 
of copies, but high per-transfer cost

• Solution: Cached buffers

• Advantages of caching:

– Cache line transfers

– Reduced latency access for CPU

– Leverage HW prefetching

– Read sharing and natural data partitioning
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Accelerator Access Methods

• User Space Buffers

• User Mapped DMA Buffers

+ High-throughput transfers

– Serialized data transfer, pinned memory

• Direct Mapping

+ No added copies, enables read sharing

+ Leverage CPU cache, HW prefetching

– One-to-one mapping
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Accelerator Access Methods

Well-defined interfaces and OS 
support enables transparent

remapping between access methods.
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Access Methods Comparison 
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Data Transfer Comparison
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Summary & Conclusion

• Summary

– CPU/Accelerator platform w/OS Support

– Framework+API for efficient and consistent 

accelerator integration with CPU

– Data access methods/case study evaluation

• Conclusions: Reuse, flexible interfaces, 

reduced overheads, and transparency

Prototype platform available for download:
http://www.HybridOS.crhc.uiuc.edu/


