
HybridOS: Runtime Support for 

Reconfigurable Accelerators

John H. Kelm

Steven S. Lumetta

University of Illinois at Urbana-Champaign



February 26th, 2008 FPGA 2008 2 of 17

Motivating Example:
JPEG Encoding for 

CPU/Accelerator Platforms

Discrete 
Cosine 

Transform

Quantization

Original

Image

Run-
Length 

Encoding

Huffman 
Coding

Reconfigurable 
Accelerator

Compressed Image

File I/O

RGB to 
YUV

File I/O
OS-Supported 

Action

User-level 
Application



February 26th, 2008 FPGA 2008 3 of 17

Roadmap

• Motivation & Introduction

• HW/SW Interfaces

• Accelerator Access Methods

• Case Study Results

• Summary & Conclusions

Problem Statement: How do we add OS support 

and reduce complexity when integrating 

accelerators with a general-purpose CPU?



February 26th, 2008 FPGA 2008 4 of 17

Introduction

• HybridOS Game Plan:

– What: Decouple HW design from SW design 

– How: Define interfaces; provide infrastructure

• Design Considerations:

– HW/SW interfaces

– Data movement

– Accelerator interconnections

– Security and protection

– Debugging



February 26th, 2008 FPGA 2008 5 of 17

Simple Coprocessor Model

Reconfigurable Accelerator

Accel

General-Purpose CPU

Accel
Memory

Apps

ProduceProduce

ConsumeConsume

Load InputLoad Input

Store OutputStore Output

ComputeCompute

System 
Memory

OS/API

• Data Movement Serialization
• Application-specific Interface

D$



February 26th, 2008 FPGA 2008 6 of 17

HybridOS Prototype Platform
Accelerator Framework

• Consistent SW Interfaces

• Protection boundaries

• Embedded memory/CPU caches

Accel

General-Purpose CPU

OS/API

Platform based on Xilinx

V2Pro FPGA/XUP Board

Accel
MemoryD$

Apps

ProduceProduce

ConsumeConsume

Load InputLoad Input

ComputeCompute

Store OutputStore Output



February 26th, 2008 FPGA 2008 7 of 17

Accelerator Access Methods

• HybridOS Access Methods:

Mechanism used to transfer data and control 

between application and accelerator(s)

• Consistent SW Interface, transparency

• Four methods evaluated

– User Space Buffers

– User Mapped DMA Buffers

– Uncacheable Direct Mapping

– Cacheable Direct Mapping



February 26th, 2008 FPGA 2008 8 of 17

Accel
Memory

DMA Controller

Accel

System 
Memory

Library API

User Mapped DMA Buffers

HybridOS API

Init

Set Up 

Mapping

User-level

OS-level 

Data Flow

Control Flow

Key

3
Transfer 

Data

App

Produce 

Inputs
1

2 Start Accel



February 26th, 2008 FPGA 2008 9 of 17

Application 
Address
Space

Accel
Memory

DMA Controller

Accel

Library API

Unached Direct Mapped Buffers

HybridOS API

Init

Set Up 

Mapping

User-level

OS-level 

Data Flow

Control Flow

Key

App

Produce 

Inputs
1

2 Start Accel



February 26th, 2008 FPGA 2008 10 of 17

Caching of Buffers

• Problem: Direct mapping reduces number 
of copies, but high per-transfer cost

• Solution: Cached buffers

• Advantages of caching:

– Cache line transfers

– Reduced latency access for CPU

– Leverage HW prefetching

– Read sharing and natural data partitioning



February 26th, 2008 FPGA 2008 11 of 17

Application 
Address
Space

Accel
Memory

DMA Controller

Accel

Library API

Cached Direct Mapped Buffers

HybridOS API

Init

Set Up 

Mapping

User-level

OS-level 

Data Flow

Control Flow

Key

App

Produce 

Inputs
1

2 Start Accel



February 26th, 2008 FPGA 2008 12 of 17

Application 
Address
Space

Accel
Memory

DMA Controller

Accel

Library API

Cached Direct Mapped Buffers

HybridOS API

Init

Set Up 

Mapping

User-level

OS-level 

Data Flow

Control Flow

Key

App

Produce 

Inputs
1

2 Start Accel

CPU 
Cache

Explicit 

Flush
3



February 26th, 2008 FPGA 2008 13 of 17

Accelerator Access Methods

• User Space Buffers

• User Mapped DMA Buffers

+ High-throughput transfers

– Serialized data transfer, pinned memory

• Direct Mapping

+ No added copies, enables read sharing

+ Leverage CPU cache, HW prefetching

– One-to-one mapping

Data Movement 
Overhead

More

Less



February 26th, 2008 FPGA 2008 14 of 17

Accelerator Access Methods

Well-defined interfaces and OS 
support enables transparent

remapping between access methods.



February 26th, 2008 FPGA 2008 15 of 17

Access Methods Comparison 

0

2000

4000

6000

User Mapped

DMA Buffer

Uncacheable

Direct Mapped

Cacheable Direct

Mapped

P
ro

c
e
s
s
o
r 
C

y
c
le

s

DMA Overhead

Data Movement

API Overhead

Execution

Roundtrip cost for processing 128-byte block

JPEG encoder DCT and Quantize Accelerators



February 26th, 2008 FPGA 2008 16 of 17

Data Transfer Comparison

Cached Direct Mapping

User Mapped DMA Buffer

Uncached Direct Mapping

8000

6000

4000

2000

0

Cycles

JPEG Case 
Study

0 64 128 160 256 320 384 448 512

Transfer Size in Bytes

User Space DMA 

Uncached Direct Map

Cached Direct Map

User Mapped DMA



February 26th, 2008 FPGA 2008 17 of 17

Summary & Conclusion

• Summary

– CPU/Accelerator platform w/OS Support

– Framework+API for efficient and consistent 

accelerator integration with CPU

– Data access methods/case study evaluation

• Conclusions: Reuse, flexible interfaces, 

reduced overheads, and transparency

Prototype platform available for download:
http://www.HybridOS.crhc.uiuc.edu/


