Area and Delay Trade-offs in the Circuit and Architecture Design of FPGAs

Ian Kuon and Jonathan Rose University of Toronto

FPGA Cost and Performance Trade-offs

- FPGAs cater to a wide range of markets
 - Different area/cost vs. performance requirements
 - Not served by a single family
- FPGA vendors now offer 2 or more families
 - Altera: Stratix → Cyclone
 - − Xilinx: Virtex → Spartan
 - Lattice: LatticeSC → LatticeECP2/M

Trade-offs Using Logical Architecture

- Cluster size
- **LUT Size**
- Special-purpose blocks

Well studied

Trade-offs Using Electrical Design

- Circuit structure
- Transistor Sizing

■ Not as well studied for FPGAs

Goals of This Work

- Explore Area-Delay Trade-offs of all three:
 - Logical Architecture
 - Circuit Topologies
 - Transistor Sizing

Want parameters with greatest leverage

Exploring Trade-offs

- Logical Architecture → VPR
 - New version with modern single driver routing

- Electrical Design → ?
 - Past manual approaches not feasible for considering hundreds of architectures
 - Need automated tool to facilitate exploration

Electrical Design of FPGAs

- No automated design tools for FPGAs exist
- ASIC/Custom tools not appropriate
- Unique challenges with FPGAs
 - Programmability
 - Don't know what end-user design will be implemented
 - Repeated Components
 - Just a few unique cells are repeatedly interconnected
- Developed automated sizing tool for FPGAs

Automated Transistor Sizing for FPGAs

- Cluster Size
- LUT Size
- Routing Topology

- Process Technology
- Mux Structure
- Area
- Delay
- AreaDelay

Measuring Area and Delay after Design Changes

Transistor sizing gives area/performance of FPGA's components

Need full experimental flow to gauge effective area/performance

Area and Delay Measurements

Measuring Trade-off Sizes – Example

Results

- Geomean delay across 20 MCNC circuits
- 90 nm CMOS

Area-Delay Trade-offs with Transistor Sizing

Transistor sizing for single architecture

Range of Area Delay Trade-offs

	Delay Range	Area Range
Transistor Sizing	16.3	2.0
Cluster Size (1-10) [Ahmed04]	1.6	1.5
LUT Size (2-7) [Ahmed04]	2.2	1.5
Segment Length [Betz99]	1.6	1.6
Cluster and LUT Size [Ahmed04]	3.2	1.7

Transistor sizing offers more range but area and delay are imbalanced

What Trade-offs are Interesting?

- Too slow or too large → design is unrealistic
 - Unreasonable to sacrifice 10X performance for a small area reduction

Restrict focus to more balanced trade-offs

$$-3 < \frac{\% \ Delay \ Change}{\% \ Area \ Change} < -\frac{1}{3}$$

Interesting Trade-offs

	Delay Range	Area Range
Transistor Sizing	1.3	1.2
Cluster and LUT Size [Ahmed04]	1.2	1.1

- Transistor sizing provides significant leverage
- But we can also vary architecture!

Trade-offs with Architecture & Transistor Sizing

Trade-offs with Architecture & Transistor Sizing

Transistor and Architecture Trade-offs

	Delay Range	Area Range
Transistor Sizing & Architecture	3.6	2.6
Cluster and LUT Size [Ahmed04]	1.2	1.1

Design space is large

Architecture and Area-Delay Trade-offs

- **LUT Size**
- Cluster Size
- Segment Length

Trade-offs with Segment Length

Limited trade-offs possible with segment length

Trade-offs with LUT Size

Varying LUT Size enables useful trade-offs

Conclusions

- Design space is large
 - Even when restricted to useful trade-offs!
- Transistor sizing is an important lever for trading-off area and delay
- LUT Size is best parameter for trade-offs at architecture level

VPR

- VPR is the placement and routing tool underlying this work and many others
 - But VPR v4.3 does not support now standard architectural features

- New Version, VPR 5.0, now in Beta
 - Supports more architectural features
 - Maintains quality and architectural exploration capabilities

VPR 5.0 New Features

- 1. Single Driver Routing Architecture
 - Unidirectional/Direct Drive; dominates
 - [Virtex98] [Lewis03] [Lemieux04]

Can model different blocks types

- Transistor-Level Design Optimized;
- Different Area/Speed Trade-offs
- IC process down to 22nm, based on PTM
- 4. Regression Test Suite
 - To maintain robustness

Architecture Repository for VPR

Architectures with Area and Delay Models (Click on Column Headers to Sort)						
NAME\PARAMETERS	CLUSTER SIZE	OBJECTIVE	TECHNOLOGY	TILE ARE		
N04K04L04.W036.AREADELAY	4	area ¹ delay ¹	22nm CMOS (BPTM)	158.		
N08K04L04.W088.AREADELAY	8	area ¹ delay ¹	32nm CMOS (BPTM)	789.		
N10K03L04.W104.AREADELAY	10	area ¹ delay ¹	45nm CMOS (BPTM)	1422		
N04K04L04.W072.AREA10DELAY	4	area ¹⁰ delay ¹	22nm CMOS (BPTM)	157.		
N10K04L04.W104.AREA10DELAY	10	area ¹⁰ delay ¹	32nm CMOS (BPTM)	884.		
N04K04L04.W072.AREADELAY	4	area ¹ delay ¹	22nm CMOS (BPTM)	189.		
N04K04L04.W072.DELAY	4	area ⁰ delay ¹	22nm CMOS (BPTM)	378.		
N04K04L04.W144.AREADELAY	4	area ¹ delay ¹	22nm CMOS (BPTM)	265.		
	_	1 1	22nm CMOS	>		

VPR 5.0 – More Information

More details, documentation and Beta of VPR 5.0 at:

http://www.eecg.utoronto.ca/vpr

Talk to me, Jonathan Rose, or Jason Luu

Area and Delay Trade-offs in the Circuit and Architecture Design of FPGAs

Ian Kuon and Jonathan Rose University of Toronto

