
Hsin-Jung YangϞ, Kermin E. Flemingϟ, Felix WintersteinÄ,
Annie I. ChenϞ, Michael Adlerϟ, and Joel EmerϞ

Ϟ Massachusetts Institute of Technology,
ϟ Intel Corporation, Ä Imperial College London

February 23rd, FPGA 2017

2

Motivation

ÅFPGA applications are getting more complicated

3

Motivation

ÅFPGA applications are getting more complicated

ïMore transistors

ïMore engines

4

Motivation

ÅFPGA applications are getting more complicated

ïMore transistors

ïMore engines

ïMultiple memory controllers

5

Motivation

ÅFPGA applications are getting more complicated

ïMore transistors

ïMore engines

ïMultiple memory controllers

ïMultiple programs

6

Customizing FPGA Platform

ÅHow to connect computational engines to board-level
memories in order to maximize program performance?

ïOn-chip caching

ïNetwork topology: latency, bandwidth

?

7

Customizing FPGA Platform

ÅHow to connect computational engines to board-level
memories in order to maximize program performance?

ïHigh design complexity: ŎŀŎƘƛƴƎΣ ƴŜǘǿƻǊƪΣΧ

?

8

Customizing FPGA Platform

ÅHow to connect computational engines to board-level
memories in order to maximize program performance?

ïHigh design complexity: ŎŀŎƘƛƴƎΣ ƴŜǘǿƻǊƪΣΧ

9

Customizing FPGA Platform

ÅHow to connect computational engines to board-level
memories in order to maximize program performance?

ïHigh design complexity: ŎŀŎƘƛƴƎΣ ƴŜǘǿƻǊƪΣΧ

ÅApplications have different memory behavior

Need more
bandwidth!

10

Customizing FPGA Platform

ÅHow to connect computational engines to board-level
memories in order to maximize program performance?

ïHigh design complexity: ŎŀŎƘƛƴƎΣ ƴŜǘǿƻǊƪΣΧ

ÅApplications have different memory behavior

 Sensitive to latency!

Need automation!

ÅA clearly-defined, generic memory abstraction

ïSeparate the user program from the memory system
implementation

ÅProgram introspection

ïUƴŘŜǊǎǘŀƴŘ ǘƘŜ ǇǊƻƎǊŀƳΩǎ memory behavior

ÅA resource-aware, feedback-driven memory compiler

ïUse introspection results as feedback to automatically
ŎƻƴǎǘǊǳŎǘ ǘƘŜ άōŜǎǘέ ƳŜƳƻǊȅ ǎȅǎǘŜƳ ŦƻǊ ǘƘŜ ǘŀǊƎŜǘ
program and platform

Automatic Construction of

Program -Optimized Memories

11

LEAP Memory Abstraction

12

interface MEM_IFC#(type t_ADDR, type t_DATA)
 method void readReq(t_ADDR addr);
 method void write(t_ADDR addr, t_DATA din);
 method t_DATA readResp();
endinterface

LEAP
Memory

User Engine

Interface

LEAP memory block
ÅSimple memory interface
ÅArbitrary data size
ÅPrivate address space
Åά¦ƴƭƛƳƛǘŜŘέ ǎǘƻǊŀƎŜ
ÅAutomatic caching

Baseline LEAP Private Memory

13

Client Client Client

Interface

Processor

Application

L1 Cache

L2 Cache

Memory

FPGA

on-chip SRAM

M. Adler et al.Σ ά[9!t {ŎǊŀǘŎƘǇŀŘǎΣέ ƛƴ CtD!Σ нлммΦ

User
Program

Platform

on-board
DRAM

Baseline LEAP Private Memory

14

Difficulty: Performance is limited

Limited bandwidth

Long latency for large rings

Can we do better?

Cache capacity scales with the
increasing number of DRAMs

Simplicity

ÅDistributed memory controllers

15

?

Customizing LEAP Memory Network

 Traffic: 100 10 50 20
 Latency Sensitivity: 5 1 2 3

Motivating Example #1

16

ÅFiltering algorithm for K-means clustering

K=5

Motivating Example #1

17

ÅFiltering algorithm for K-means clustering (HLS kernel)

ï3 different data structures

ï8 parallel partitions,
24 LEAP memory clients in total

Three data structures:
(1) Tree nodes (low locality)
(2) Center sets (high locality)
(3) Stack (very high locality)

Motivating Example #1

18

ÅFiltering algorithm for K-means clustering

ïProgram introspection: number of network messages

Three types of memory clients:
(1) Lots of read misses, few write-backs (tree nodes)
(2) More write-backs than read misses (center sets)
(3) No messages at all (stacks)

Motivating Example #2

19

ÅFPGA virtualization: mapping multiple programs on FPGA

ïDifferent programs are likely to have different behavior

ïMay need some quality-of-service (QoS) control

Communication Abstraction

20

ÅService connection

ïA new communication abstraction for centralized services

ÅEnabling compilers to freely pick interconnect topology

Service Server
Name: άa9aέ

Service Controller
 mkSer vi ceSer ver (ñMEMò) ;

Request
Response

Module C
mkSer vi ceCl i ent (ñMEMò) ;

Service Client
Name: άa9aέ, ID:3

Module B
mkSer vi ceCl i ent (ñMEMò) ;

Service Client
Name: άa9aέ, ID:2

Module A
mkSer vi ceCl i ent (ñMEMò) ;

Service Client
Name: άa9aέ, ID:1

Compiler-Generated

Arbiter

Arbiter

Service Server
Name: άa9aέ

Service Controller
 mkSer vi ceSer ver (ñMEMò) ;

Request
Response

Module C
mkSer vi ceCl i ent (ñMEMò) ;

Service Client
Name: άa9aέ, ID:3

Module B
mkSer vi ceCl i ent (ñMEMò) ;

Service Client
Name: άa9aέ, ID:2

Module A
mkSer vi ceCl i ent (ñMEMò) ;

Service Client
Name: άa9aέ, ID:1

Service Server
Name: άa9aέ

Service Controller
 mkSer vi ceSer ver (ñMEMò) ;

Request
Response

Module C
mkSer vi ceCl i ent (ñMEMò) ;

Service Client
Name: άa9aέ, ID:3

Module B
mkSer vi ceCl i ent (ñMEMò) ;

Service Client
Name: άa9aέ, ID:2

Module A
mkSer vi ceCl i ent (ñMEMò) ;

Service Client
Name: άa9aέ, ID:1

Service Server
Name: άa9aέ

Service Controller
 mkSer vi ceSer ver (ñMEMò) ;

Request
Response

Module C
mkSer vi ceCl i ent (ñMEMò) ;

Service Client
Name: άa9aέ, ID:3

Module B
mkSer vi ceCl i ent (ñMEMò) ;

Service Client
Name: άa9aέ, ID:2

Module A
mkSer vi ceCl i ent (ñMEMò) ;

Service Client
Name: άa9aέ, ID:1

Compiler -Generated

Network Topologies

21

3 4 5 6 71 2

Request

Client

Controller

Response

Ring Node

Client

1 2

3 4

5 6 7

Ring
Connector

Single Ring

Hierarchical Ring Tree

Low complexity, long latency

Shorter latency, larger area

765

321

4

Tree Router

Highest complexity, shortest latency

Network Profiler

22

Compiler-Generated
Tree Router Tree Router

Latency FIFOs

Interleaver

Instrumentation

Private
Memory

Interleaver

Instrumentation

Private
Memory

Interleaver

Instrumentation

Private
Memory

Interleaver

Instrumentation

Private
Memory

Private Memory Controller Private Memory Controller

Central Cache Controller

DRAM Performance
Controller

Local Memory (DRAM)

Host Virtual Memory Interface

Central Cache Controller

DRAM Performance
Controller

Local Memory (DRAM)

Request
Response

ÅGoal: to emulate different networks in a single compilation

ïNetwork partitioning, latency and bandwidth are all
dynamically configurable

ÅConstruct a tree network that maximizes performance

ïIdeal case:

ïMore children per node, larger timing pressure on routers

ïFix K = max(#children per node) given a target frequency

Tree -Based Network

23

Timing Pressure

ÅConstruct a K-ary tree that maximizes performance

ïGiven L: number of leaves (clients)
 K: max number of children per node

ïCase 1: clients with homogeneous behavior

ÅSolution: build a balanced tree with the minimum
number internal nodes

ÅExample: L=6, K=3

Tree -Based Network

24

Minimizing ВƭŜŀŦ ŘŜǇǘƘύ Depth = 0

Depth = 1

Depth = 2

ÅConstruct a K-ary tree that maximizes performance

ïCase 2: clients with heterogeneous behavior

ÅSome clients are more sensitive to latency

ÅPlace latency-sensitive clients closer to root

ÅA balanced tree may not be optimal

ÅExample: L=6, K=3

Tree -Based Network

25 Solution A

Better!

2d

1d 1d 0.5d 0.5d 0.2d

Depth d=1

Total: 8.4

Depth d=2

Solution B

2d 1d

1d 0.5d

0.5d 0.2d

Total: 8.1

d=1

d=2

d=3

ÅA clearly-defined, generic memory abstraction

ïSeparate the user program from the memory system
implementation

ÅProgram introspection

ïUƴŘŜǊǎǘŀƴŘ ǘƘŜ ǇǊƻƎǊŀƳΩǎ memory behavior

ÅA resource-aware, feedback-driven memory compiler

ïUse introspection results as feedback to automatically
ŎƻƴǎǘǊǳŎǘ ǘƘŜ άōŜǎǘέ ƳŜƳƻǊȅ ǎȅǎǘŜƳ ŦƻǊ ǘƘŜ ǘŀǊƎŜǘ
program and platform

Automatic Construction of

Program -Optimized Memories

26

Program Introspection with

Network Profiler

27

ÅNetwork profiler measures latency sensitivity per
memory client

Compiler-Generated
Tree Router Tree Router

Latency FIFOs

Interleaver

Instrumentation

Private
Memory

Interleaver

Instrumentation

Private
Memory

Interleaver

Instrumentation

Private
Memory

Interleaver

Instrumentation

Private
Memory

Private Memory Controller Private Memory Controller

Central Cache Controller

DRAM Performance
Controller

Local Memory (DRAM)

Host Virtual Memory Interface

Central Cache Controller

DRAM Performance
Controller

Local Memory (DRAM)

Request
Response

Program Introspection with

Network Profiler

28

ÅNetwork profiler measures latency sensitivity per
memory client

Program Introspection with

Network Profiler

29

ÅInstrumentation logic monitors total number of requests,
ǊŜǉǳŜǎǘ ǊŀǘŜǎΣ ǉǳŜǳŜƛƴƎ ŘŜƭŀȅǎΧ

Compiler-Generated
Tree Router Tree Router

Latency FIFOs

Interleaver

Instrumentation

Private
Memory

Interleaver

Instrumentation

Private
Memory

Interleaver

Instrumentation

Private
Memory

Interleaver

Instrumentation

Private
Memory

Private Memory Controller Private Memory Controller

Central Cache Controller

DRAM Performance
Controller

Local Memory (DRAM)

Host Virtual Memory Interface

Central Cache Controller

DRAM Performance
Controller

Local Memory (DRAM)

Request
Response

ÅProfiling compilation

ïaŜŀǎǳǊŜ ŎƭƛŜƴǘǎΩ ƭŀǘŜƴŎȅ ǎŜƴǎƛǘƛǾƛǘȅΣ ōŀƴŘǿƛŘǘƘ ŘŜƳŀƴŘǎ

ÅMain compilation: three-stage network construction

ïNetwork partitioning: όCtD!Ωмсύ

to balance the total traffic among controller networks

ïTopology selection with client placement: to minimize
the network latency impact on program performance

Construction of Optimized

Cache Networks

30 H.-J. Yang et al.Σ ά[a/Υ !ǳǘƻƳŀǘƛŎ wŜǎƻǳǊŎŜ-Aware Program-Optimized Memory tŀǊǘƛǘƛƻƴƛƴƎΣέ in FPGA, 2016.

ÅConstruct a K-ary tree minimizing the total tree weights

ïGiven ὔ: # leaves, ὑ: max # children, Ὀ: max tree depth,

 ύ : weight of leaf ὲ at depth Ὠ

ïVariables: ‗ ᶰπȟρ: whether leaf ὲ is at depth Ὠ
 ὼ ɴɟ : # leaves at depth Ὠ
 ώ ɴɟ : # internal nodes at depth Ὠ

ïInteger linear programming (ILP) Problem:

ÍÉÎ
ȟȟ

‗ ύ

Optimized Tree Construction

31

s.t. В ‗ ρȟᶅὲ
 ὼ В ‗ ȟᶅὨ
 ώ ὼ ὑϽώ ȟᶅὨ
 ώ ρ (root)

ÅProfiling compilation

ÅMain compilation: three-stage network construction

ïNetwork partitioning όCtD!Ωмсύ

ïTopology selection with client placement

ïBandwidth allocation: (for multi-program applications)
to control the fairness among multiple programs

Construction of Optimized

Cache Networks

32

Tree Router

3 1 2 2 5
Allocated
Bandwidth:

Evaluation

33

ÅFiltering algorithm on VC709

ïVarying ὑ (max number of children per node)

Baseline

Ideal Network

