
Hsin-Jung YangϞ, Kermin E. Flemingϟ, Felix WintersteinÄ, 
Annie I. ChenϞ, Michael Adlerϟ, and Joel EmerϞ 

 

Ϟ Massachusetts Institute of Technology,  
ϟ Intel Corporation, Ä Imperial College London  

February 23rd, FPGA 2017 



2 

Motivation  

ÅFPGA applications are getting more complicated 



3 

Motivation  

ÅFPGA applications are getting more complicated 

ïMore transistors 

ïMore engines 



4 

Motivation  

ÅFPGA applications are getting more complicated 

ïMore transistors 

ïMore engines 

ïMultiple memory controllers 



5 

Motivation  

ÅFPGA applications are getting more complicated 

ïMore transistors 

ïMore engines 

ïMultiple memory controllers 

ïMultiple programs 

 



6 
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ïOn-chip caching 

ïNetwork topology: latency, bandwidth 
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Customizing FPGA Platform  

ÅHow to connect computational engines to board-level 
memories in order to maximize program performance? 

ïHigh design complexity: ŎŀŎƘƛƴƎΣ ƴŜǘǿƻǊƪΣΧ 

ÅApplications have different memory behavior 

 Sensitive to latency! 

Need automation! 



ÅA clearly-defined, generic memory abstraction 

ïSeparate the user program from the memory system 
implementation 

ÅProgram introspection  

ïUƴŘŜǊǎǘŀƴŘ ǘƘŜ ǇǊƻƎǊŀƳΩǎ memory behavior 

ÅA resource-aware, feedback-driven memory compiler  

ïUse introspection results as feedback to automatically 
ŎƻƴǎǘǊǳŎǘ ǘƘŜ άōŜǎǘέ ƳŜƳƻǊȅ ǎȅǎǘŜƳ ŦƻǊ ǘƘŜ ǘŀǊƎŜǘ 
program and platform 

 

 

Automatic Construction of  

Program -Optimized Memories  
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LEAP Memory Abstraction  
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interface MEM_IFC#(type t_ADDR, type t_DATA) 
       method void readReq(t_ADDR addr); 
       method void write(t_ADDR addr, t_DATA din); 
       method t_DATA readResp(); 
endinterface 

LEAP 
Memory 

User Engine  

Interface 

LEAP memory block 
ÅSimple memory interface 
ÅArbitrary data size 
ÅPrivate address space 
Åά¦ƴƭƛƳƛǘŜŘέ ǎǘƻǊŀƎŜ 
ÅAutomatic caching 



Baseline LEAP Private Memory  
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M. Adler et al.Σ ά[9!t {ŎǊŀǘŎƘǇŀŘǎΣέ ƛƴ CtD!Σ нлммΦ 
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Baseline LEAP Private Memory  
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Difficulty:  Performance is limited 
 
 

Limited bandwidth 

Long latency for large rings 

Can we do better? 

Cache capacity scales with the 
increasing number of DRAMs 

Simplicity 



ÅDistributed memory controllers 
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? 

Customizing LEAP Memory Network  

             Traffic:            100                  10                     50               20 
             Latency Sensitivity:       5                      1                      2                  3 



Motivating Example #1  
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ÅFiltering algorithm for K-means clustering 

K=5 



Motivating Example #1  
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ÅFiltering algorithm for K-means clustering (HLS kernel) 

ï3 different data structures 

ï8 parallel partitions,  
24 LEAP memory clients in total 

Three data structures:  
(1) Tree nodes (low locality) 
(2) Center sets (high locality) 
(3) Stack (very high locality) 



Motivating Example #1  
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ÅFiltering algorithm for K-means clustering 

ïProgram introspection: number of network messages  
 

Three types of memory clients:  
(1) Lots of read misses, few write-backs (tree nodes) 
(2) More write-backs than read misses (center sets) 
(3) No messages at all (stacks) 



Motivating Example #2  
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ÅFPGA virtualization: mapping multiple programs on FPGA 

 

 

 

 

 

 

ïDifferent programs are likely to have different behavior 

ïMay need some quality-of-service (QoS) control 



Communication Abstraction  
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ÅService connection 

ïA new communication abstraction for centralized services 

ÅEnabling compilers to freely pick interconnect topology 

 

 

Service Server
Name: άa9aέ

Service Controller
 mkSer vi ceSer ver ( ñMEMò) ;
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Response
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Compiler -Generated  

Network Topologies  
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Ring 
Connector

Single Ring 

Hierarchical Ring Tree 

Low complexity, long latency 

Shorter latency, larger area 

765

321

4

Tree Router

Highest complexity, shortest latency 



Network Profiler  
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Compiler-Generated
Tree Router Tree Router

Latency FIFOs

Interleaver

Instrumentation

Private 
Memory

Interleaver

Instrumentation

Private 
Memory

Interleaver

Instrumentation

Private 
Memory
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DRAM Performance  
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ÅGoal: to emulate different networks in a single compilation 

ïNetwork partitioning, latency and bandwidth are all 
dynamically configurable 



ÅConstruct a tree network that maximizes performance 

ïIdeal case: 

 

 

 

 
 

ïMore children per node, larger timing pressure on routers 

ïFix K = max(#children per node) given a target frequency 

 

 

 

Tree -Based Network  
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Timing Pressure 



ÅConstruct a K-ary tree that maximizes performance 

ïGiven L: number of leaves (clients) 
           K: max number of children per node 

ïCase 1: clients with homogeneous behavior 

ÅSolution: build a balanced tree with the minimum 
number internal nodes  

ÅExample: L=6, K=3 

 

Tree -Based Network  
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Minimizing ВƭŜŀŦ ŘŜǇǘƘύ Depth = 0 

Depth = 1 

Depth = 2 



ÅConstruct a K-ary tree that maximizes performance 

ïCase 2: clients with heterogeneous behavior 

ÅSome clients are more sensitive to latency 

ÅPlace latency-sensitive clients closer to root 

ÅA balanced tree may not be optimal  

ÅExample: L=6, K=3 

 

Tree -Based Network  

25 Solution A 

Better! 

2d 

1d 1d 0.5d 0.5d 0.2d 

Depth d=1 

Total: 8.4 

Depth d=2 

Solution B 

2d 1d 

1d 0.5d 

0.5d 0.2d 

Total: 8.1 

d=1 

d=2 

d=3 



ÅA clearly-defined, generic memory abstraction 
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Program Introspection with 

Network Profiler  
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ÅNetwork profiler measures latency sensitivity per 
memory client 
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Program Introspection with 

Network Profiler  
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ÅNetwork profiler measures latency sensitivity per 
memory client 

 

 

 

 

 



Program Introspection with 

Network Profiler  
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ÅInstrumentation logic monitors total number of requests, 
ǊŜǉǳŜǎǘ ǊŀǘŜǎΣ ǉǳŜǳŜƛƴƎ ŘŜƭŀȅǎΧ 

Compiler-Generated
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ÅProfiling compilation 

ïaŜŀǎǳǊŜ ŎƭƛŜƴǘǎΩ ƭŀǘŜƴŎȅ ǎŜƴǎƛǘƛǾƛǘȅΣ ōŀƴŘǿƛŘǘƘ ŘŜƳŀƴŘǎ 

 
 

ÅMain compilation: three-stage network construction 

ïNetwork partitioning: όCtD!Ωмсύ 

to balance the total traffic among controller networks 

ïTopology selection with client placement:  to minimize 
the network latency impact on program performance 
 

Construction of Optimized  

Cache Networks  

30 H.-J. Yang et al.Σ ά[a/Υ !ǳǘƻƳŀǘƛŎ wŜǎƻǳǊŎŜ-Aware Program-Optimized Memory tŀǊǘƛǘƛƻƴƛƴƎΣέ in FPGA, 2016. 



ÅConstruct a K-ary tree minimizing the total tree weights 

ïGiven  ὔ: # leaves,  ὑ: max # children, Ὀ: max tree depth, 

             ύ : weight of leaf ὲ at depth Ὠ 

ïVariables: ‗ ᶰπȟρ: whether leaf ὲ is at depth Ὠ 
                       ὼ  ɴɟ : # leaves at depth Ὠ 
                       ώ  ɴɟ : # internal nodes at depth Ὠ 
 

ïInteger linear programming (ILP) Problem:  

 

ÍÉÎ
ȟȟ

‗ ύ  

 
 

Optimized Tree Construction  
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s.t. В ‗ ρȟᶅὲ 
      ὼ В ‗ ȟᶅὨ 
      ώ ὼ ὑϽώ ȟᶅὨ 
      ώ ρ (root)             



ÅProfiling compilation 

ÅMain compilation: three-stage network construction 

ïNetwork partitioning όCtD!Ωмсύ 

ïTopology selection with client placement 

ïBandwidth allocation: (for multi-program applications) 
to control the fairness among multiple programs 
 

Construction of Optimized  

Cache Networks  
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Tree Router 

3 1 2 2 5 
Allocated 
Bandwidth: 



Evaluation  
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ÅFiltering algorithm on VC709 

ïVarying ὑ (max number of children per node) 
 

Baseline 

Ideal Network 








