Agile Co-Design for a Reconfigurable Datacenter

Acknowledgments: CSI Team, Altera
FPGA’16 Designer Session
Or: 8 Requirements for Deploying and Developing Algorithms for FPGAs at Scale

Acknowledgments: CSI Team, Altera
FPGA’16 Designer Session
Project Catapult History

- December 9, 2010 – initial meeting
 - Christmas break 2010: feasible to accelerate ranking?
 - January 12, 2011: meeting with Bing leadership

- 2011 – v0: ported Bing ranking stack, built BFB board
- 2012 – v1: developed distributed architecture
- 2013 – Took v1 to scale, Bing pilot
- 2014 – v2: developed new architecture
- 2015 – Production

Putnam et al., “A Reconfigurable Fabric for Accelerating Large-Scale Datacenter Services”, ISCA’13
Catapult FPGA Accelerator Card

- Altera Stratix V D5
- 172,600 ALMs, 2,014 M20Ks, 1,590 DSPs
- PCIe Gen 3 x8
- 8GB DDR3-1333
- Powered by PCIe slot
- Torus Network
1,632 server pilot deployed in production BN datacenter
MICROSOFT SUPERCHARGES BING SEARCH WITH PROGRAMMABLE CHIPS

http://www.wired.com/2014/06/microsoft-fpga/
MICROSOFT SUPERCHARGES BING SEARCH WITH FPGA

2x Increase in Throughput
29% Latency Reduction

SW + FPGA
< 30% Cost
< 25 W Power
0 HW Failures

http://www.wired.com/2014/06/microsoft-fpga/
So You Want to Compute With FPGAs?

- Discover HW bugs
- Wait hours for tools

- Wait hours for tools
- Run through tools
- Simulate design
- Code design in HDL

- Figure out cabling
- Install USB drivers
- Search for simple tool tutorial
- Learn HDL

- Tool Install (12 hours)
- Tool Download (24 hours)
- Find 10GB of free disk
- Pricing?

- Learn digital Logic
- Learn about FPGAs arch
- Decode vendor website
- Which device? Which board?

Anecdote

- Newly hired FPGA developer assigned to port critical Bing feature to FPGA

- Using Catapult platform, developer built and deployed new feature with >2X net gain in 1 month
Requirement 1: Build Production-Class Platform for Developers, Developers, Developers, ...

Operation
- Driver Deployment
- FPGA Watchdog
- Board & SKU Qualification Process
- Golden Image
- Factory & Integration Test Suites

Hardware Acceleration Platform
- GZIP
- FIFOs
- LTL
- RAMs
- CNN
- Flight Recorder
- Encryption
- HEX
- Queue Manager
- Software Dev Kit & Runtime Library
- Catapult Kernel Driver
- Role HW API
- Health & Config
- DRAM
- PCIe DMA
- Network

Development
- HW Library Package(s)
- Product SW
 - Catapult Runtime Library
- SDK Package
 - Libs
 - Prod. HW/RTL
- OpenCL BSP
- Shell
- Shell Package
- Cloud FPGA Flow
- License Servers

Verification Team
Catapult Shell Architecture

- **Common I/O**
 - Network
 - DRAM
 - PCIe DMA

- Verified to ASIC standards by verification team

- Published as stable packages to developers

- OpenCL BSP support
Catapult Windows SDK & PCIe Driver

- **SDK**: thread- and multi-process safe library for CPU-FPGA message passing
- **Driver**: handles FPGA reconfiguration without server reboot (~3sec)
- **Shells, SDKs, and Drivers** are compatible across versions
Requirement 2: Be Obsessively Data-Driven When Selecting Features To Accelerate

• Real cloud workloads extremely diverse and complicated

• Invest in in-situ performance profiling of target application

• Optimize on “return per LUT”
Requirement 3: Don’t Underestimate Software

• Invest properly in architecting efficient, correct HW-SW contract
 • Ignoring this can lead to performance pathologies, hangs, parity issues

• Establish through formal HW-SW contracts
 • Formalize and evolve through APIs and header definitions
 • Closely monitor SW overheads
 • Run-time check of HW-SW versions and data types
 • Tight coordination with software teams

• Build tools to automate code generation from precise specifications
Requirement 4: Scale Out FPGA Tools in Cloud

- **MS Cloud Tools**
 - Run place-and-route and simulation tools on scalable resources
 - Speed up timing closure with parallel seeds
 - Must support determinism
 - Build caching shared amongst multiple users
 - Visual Studio integration
 - Partial reconfiguration
 - Static lock regions
Requirement 5: Automate Hardware Testing

- Invest in framework for automatic regression testing with FPGAs
- Test HW automatically on check-ins
 - Cross-compatibility between software/drivers/shell
 - Reconfiguration stress test
 - Factory test
 - Applications
 - Golden images
Requirement 6: Adopt Software Best Practices

- Establish high bar for coding
- No “lone-wolf” check-ins
- Rigorous code reviews
- Strict coding guidelines
- Automate linting on check-ins
- Track tasks systematically (e.g., Visual Studio TFS)
Requirement 7: Prepare for Bugs in Deployment

• **Challenges**
 • Bugs inevitably slip into deployment ➔ lead to stalls or hangs in software
 • *No digital logic analyzer (e.g., Signaltap)*

• **Goals**
 • Minimize service disruption during bug-induced failure
 • Minimize time-to-recovery
 • Collect information for off-line repro and debug

• **Solutions**
 • Lightweight in-situ monitoring and mitigation of failures in the FPGA itself
 • Examples: Flight Data Recorder, Hardware Exceptions, Role self-reset
 ➔ *Enabled successful debug of rare FPGA hang (once every few days) in datacenter*
Requirement 8: Support Fault Tolerance at Scale

- **Challenges in Large-Scale Deployments**
 - How to minimize server disruption during FPGA reconfiguration?
 - How to track FPGAs’ health across datacenter?
 - How to distinguish FPGA failures from others?
 - How to log FPGAs without disrupting service?
 - How to respond to failures?

- **Solutions**
 - Datacenter-scale telemetry of FPGAs using AP
 - Tuned drivers minimized impact during reconfiguration
 - Continuous monitoring using watchdogs ➔ automatic triage steps
 - DRI for 24/7 monitoring of livesites
Closing Remarks

- Programmable logic can play major role in datacenter architecture
 - Will enable new applications, services to be cost effective

- It is viable to support a high rate of innovation with robust, scalable, & productive development platform

- erchung@microsoft.com